Mixed-integer quadratic programming reformulations of multi-task learning models

In this manuscript, we consider well-known multi-task learning (MTL) models from the literature for linear regression problems, such as clustered MTL or weakly constrained MTL. We propose novel reformulations of the training problem for these models, based on mixed-integer quadratic programming (MIQ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics in engineering Jg. 5; H. 1; S. 1 - 16
Hauptverfasser: Lapucci, Matteo, Pucci, Davide
Format: Journal Article
Sprache:Englisch
Veröffentlicht: AIMS Press 01.03.2023
Schlagworte:
ISSN:2640-3501, 2640-3501
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this manuscript, we consider well-known multi-task learning (MTL) models from the literature for linear regression problems, such as clustered MTL or weakly constrained MTL. We propose novel reformulations of the training problem for these models, based on mixed-integer quadratic programming (MIQP) techniques. We show that our approach allows to drive the optimization process up to certified global optimality, exploiting popular off-the-shelf software solvers. By computational experiments on both synthetic and real-world datasets, we show that this strategy generally leads to improvements in terms of the predictive performance of the models, if compared to the classical local optimization techniques, based on alternating minimization strategies, that are usually employed. We also suggest a number of possible extensions of our model that should further improve the quality of the obtained regressors, introducing, for example, sparsity and features selection elements.
AbstractList In this manuscript, we consider well-known multi-task learning (MTL) models from the literature for linear regression problems, such as clustered MTL or weakly constrained MTL. We propose novel reformulations of the training problem for these models, based on mixed-integer quadratic programming (MIQP) techniques. We show that our approach allows to drive the optimization process up to certified global optimality, exploiting popular off-the-shelf software solvers. By computational experiments on both synthetic and real-world datasets, we show that this strategy generally leads to improvements in terms of the predictive performance of the models, if compared to the classical local optimization techniques, based on alternating minimization strategies, that are usually employed. We also suggest a number of possible extensions of our model that should further improve the quality of the obtained regressors, introducing, for example, sparsity and features selection elements.
Author Lapucci, Matteo
Pucci, Davide
Author_xml – sequence: 1
  givenname: Matteo
  surname: Lapucci
  fullname: Lapucci, Matteo
– sequence: 2
  givenname: Davide
  surname: Pucci
  fullname: Pucci, Davide
BookMark eNpNkM1OwzAQhC1UJErpjQfIA5DivzjJEVX8VCqCA5ytjb2OUpK42KkEb09CK8Rpd2dHnzRzSWa975GQa0ZXohTytmt6XHHKBeX0jMy5kjQVGWWzf_sFWca4o5RyxiXPszl5fW6-0KZNP2CNIfk8gA0wNCbZB18H6EZqnQR0PnSHdnz4PibeJeMxNOkA8SNpEUI_uTpvsY1X5NxBG3F5mgvy_nD_tn5Kty-Pm_XdNgUh6JCarGSFrIwxLneVUsJRYwoneVaiLHKsGM8Lo5TLEGThQE52VghrDFqpKrEgmyPXetjpfWg6CN_aQ6N_BR9qDWEM0qLGvGTOlSwf4ZJyCwKFc1QK61RJKxhZN0eWCT7GMe0fj1E9launcvWpXPEDNOtwfw
Cites_doi 10.1609/aaai.v29i1.9581
10.1609/aaai.v27i1.8577
10.1145/1645953.1646169
10.1214/16-STS602
10.1109/ICCV.2011.6126288
10.1007/s10589-019-00134-5
10.1561/9781601984616
10.1145/2538028
10.1145/2556195.2556264
10.1145/2020408.2020423
10.1016/j.ejor.2015.06.081
10.1109/ICCV.2015.426
10.1007/s10994-007-5040-8
10.1007/s10589-016-9832-2
10.1007/s10589-021-00288-1
10.1137/0916069
10.1109/TCBB.2010.22
10.1023/A:1007379606734
10.1214/15-AOS1388
10.1186/1471-2105-11-181
10.1109/TITS.2016.2598356
10.1287/ijoc.2020.1031
10.1109/TPAMI.2015.2452911
10.2307/2348496
10.1109/TBME.2009.2036000
10.21437/Interspeech.2015-265
10.1109/ICASSP.2015.7178814
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/mine.2023020
DatabaseName CrossRef
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2640-3501
EndPage 16
ExternalDocumentID oai_doaj_org_article_e791ff917259402da3e3ff043df690ba
10_3934_mine_2023020
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
BCNDV
CITATION
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-a330t-c59184bcccf7fb663f0cc8f4259e487eb1278c66f5ea48fa49184183dcced46b3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000777879800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2640-3501
IngestDate Fri Oct 03 12:51:48 EDT 2025
Sat Nov 29 02:56:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a330t-c59184bcccf7fb663f0cc8f4259e487eb1278c66f5ea48fa49184183dcced46b3
OpenAccessLink https://doaj.org/article/e791ff917259402da3e3ff043df690ba
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_e791ff917259402da3e3ff043df690ba
crossref_primary_10_3934_mine_2023020
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Mathematics in engineering
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/mine.2023020-22
key-10.3934/mine.2023020-23
key-10.3934/mine.2023020-20
key-10.3934/mine.2023020-42
key-10.3934/mine.2023020-21
key-10.3934/mine.2023020-43
key-10.3934/mine.2023020-26
key-10.3934/mine.2023020-27
key-10.3934/mine.2023020-24
key-10.3934/mine.2023020-25
key-10.3934/mine.2023020-28
key-10.3934/mine.2023020-29
key-10.3934/mine.2023020-40
key-10.3934/mine.2023020-41
key-10.3934/mine.2023020-1
key-10.3934/mine.2023020-2
key-10.3934/mine.2023020-11
key-10.3934/mine.2023020-33
key-10.3934/mine.2023020-3
key-10.3934/mine.2023020-12
key-10.3934/mine.2023020-34
key-10.3934/mine.2023020-4
key-10.3934/mine.2023020-31
key-10.3934/mine.2023020-5
key-10.3934/mine.2023020-10
key-10.3934/mine.2023020-32
key-10.3934/mine.2023020-6
key-10.3934/mine.2023020-15
key-10.3934/mine.2023020-37
key-10.3934/mine.2023020-7
key-10.3934/mine.2023020-16
key-10.3934/mine.2023020-38
key-10.3934/mine.2023020-8
key-10.3934/mine.2023020-13
key-10.3934/mine.2023020-35
key-10.3934/mine.2023020-9
key-10.3934/mine.2023020-14
key-10.3934/mine.2023020-36
key-10.3934/mine.2023020-19
key-10.3934/mine.2023020-17
key-10.3934/mine.2023020-39
key-10.3934/mine.2023020-18
key-10.3934/mine.2023020-30
References_xml – ident: key-10.3934/mine.2023020-35
– ident: key-10.3934/mine.2023020-21
  doi: 10.1609/aaai.v29i1.9581
– ident: key-10.3934/mine.2023020-41
  doi: 10.1609/aaai.v27i1.8577
– ident: key-10.3934/mine.2023020-5
  doi: 10.1145/1645953.1646169
– ident: key-10.3934/mine.2023020-8
  doi: 10.1214/16-STS602
– ident: key-10.3934/mine.2023020-20
– ident: key-10.3934/mine.2023020-32
  doi: 10.1109/ICCV.2011.6126288
– ident: key-10.3934/mine.2023020-15
  doi: 10.1007/s10589-019-00134-5
– ident: key-10.3934/mine.2023020-24
– ident: key-10.3934/mine.2023020-10
  doi: 10.1561/9781601984616
– ident: key-10.3934/mine.2023020-17
– ident: key-10.3934/mine.2023020-30
– ident: key-10.3934/mine.2023020-1
– ident: key-10.3934/mine.2023020-7
– ident: key-10.3934/mine.2023020-34
– ident: key-10.3934/mine.2023020-3
– ident: key-10.3934/mine.2023020-38
– ident: key-10.3934/mine.2023020-40
  doi: 10.1145/2538028
– ident: key-10.3934/mine.2023020-2
  doi: 10.1145/2556195.2556264
– ident: key-10.3934/mine.2023020-13
  doi: 10.1145/2020408.2020423
– ident: key-10.3934/mine.2023020-27
  doi: 10.1016/j.ejor.2015.06.081
– ident: key-10.3934/mine.2023020-29
  doi: 10.1109/ICCV.2015.426
– ident: key-10.3934/mine.2023020-4
  doi: 10.1007/s10994-007-5040-8
– ident: key-10.3934/mine.2023020-42
– ident: key-10.3934/mine.2023020-28
  doi: 10.1007/s10589-016-9832-2
– ident: key-10.3934/mine.2023020-14
  doi: 10.1007/s10589-021-00288-1
– ident: key-10.3934/mine.2023020-11
  doi: 10.1137/0916069
– ident: key-10.3934/mine.2023020-37
  doi: 10.1109/TCBB.2010.22
– ident: key-10.3934/mine.2023020-12
  doi: 10.1023/A:1007379606734
– ident: key-10.3934/mine.2023020-9
  doi: 10.1214/15-AOS1388
– ident: key-10.3934/mine.2023020-23
– ident: key-10.3934/mine.2023020-25
  doi: 10.1186/1471-2105-11-181
– ident: key-10.3934/mine.2023020-26
  doi: 10.1109/TITS.2016.2598356
– ident: key-10.3934/mine.2023020-19
  doi: 10.1287/ijoc.2020.1031
– ident: key-10.3934/mine.2023020-43
  doi: 10.1109/TPAMI.2015.2452911
– ident: key-10.3934/mine.2023020-18
  doi: 10.2307/2348496
– ident: key-10.3934/mine.2023020-16
– ident: key-10.3934/mine.2023020-31
  doi: 10.1109/TBME.2009.2036000
– ident: key-10.3934/mine.2023020-33
– ident: key-10.3934/mine.2023020-39
– ident: key-10.3934/mine.2023020-6
– ident: key-10.3934/mine.2023020-22
  doi: 10.21437/Interspeech.2015-265
– ident: key-10.3934/mine.2023020-36
  doi: 10.1109/ICASSP.2015.7178814
SSID ssj0002124275
Score 2.2186632
Snippet In this manuscript, we consider well-known multi-task learning (MTL) models from the literature for linear regression problems, such as clustered MTL or weakly...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 1
SubjectTerms clustered mtl
global optimization
miqp
multitask learning
weakly constrained mtl
Title Mixed-integer quadratic programming reformulations of multi-task learning models
URI https://doaj.org/article/e791ff917259402da3e3ff043df690ba
Volume 5
WOSCitedRecordID wos000777879800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2640-3501
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124275
  issn: 2640-3501
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2640-3501
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124275
  issn: 2640-3501
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxcDCN6J8yQOMpmntxPEIqBVLqw4gdYsc21dViBaaFDHx2zk7BmVjYckQWbH1Lne-J53eI-Q6SY3nEZqZ1Ekm3KDPMIs4U8Y4YSEXLtHBbEJOJvlspqYtqy8_E9bIAzfA9ZxUfQAkFdinI9exmjsOkAhuAYldGVqjRKoWmfI1GAuyGMi0mXTnioveKzZtt94rPPHW3q07qCXVH-6U0T7Zjc0gvWsOcUC23PKQ7MXGkMa0q47IdLz4dJYFaQe3pu8bbX3gDI3TVbjrnOI22H9GN66KroCGYUFW6-qFRnOIOQ3ON9UxeR4Nnx4eWbRCYJrzpEYkFVKx0hgDEkrsEiAxJgdMOOWQcmDBHcjcZBmkTosctPDLMVstQm5FVvIT0lmulu6UUAUyy4zV_dKrk4m0TKXxum6l4oDVxnXJzQ84xVujeFEgU_AgFh7EIoLYJfceud81Xqc6vMDoFTF6xV_RO_uPj5yTHX-mZjLsgnTq9cZdkm3zUS-q9VX4MfA5_hp-A0ibwYc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed-integer+quadratic+programming+reformulations+of+multi-task+learning+models&rft.jtitle=Mathematics+in+engineering&rft.au=Matteo+Lapucci&rft.au=Davide+Pucci&rft.date=2023-03-01&rft.pub=AIMS+Press&rft.eissn=2640-3501&rft.volume=5&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.3934%2Fmine.2023020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e791ff917259402da3e3ff043df690ba
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2640-3501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2640-3501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2640-3501&client=summon