Mixed-integer quadratic programming reformulations of multi-task learning models
In this manuscript, we consider well-known multi-task learning (MTL) models from the literature for linear regression problems, such as clustered MTL or weakly constrained MTL. We propose novel reformulations of the training problem for these models, based on mixed-integer quadratic programming (MIQ...
Gespeichert in:
| Veröffentlicht in: | Mathematics in engineering Jg. 5; H. 1; S. 1 - 16 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
AIMS Press
01.03.2023
|
| Schlagworte: | |
| ISSN: | 2640-3501, 2640-3501 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this manuscript, we consider well-known multi-task learning (MTL) models from the literature for linear regression problems, such as clustered MTL or weakly constrained MTL. We propose novel reformulations of the training problem for these models, based on mixed-integer quadratic programming (MIQP) techniques. We show that our approach allows to drive the optimization process up to certified global optimality, exploiting popular off-the-shelf software solvers. By computational experiments on both synthetic and real-world datasets, we show that this strategy generally leads to improvements in terms of the predictive performance of the models, if compared to the classical local optimization techniques, based on alternating minimization strategies, that are usually employed. We also suggest a number of possible extensions of our model that should further improve the quality of the obtained regressors, introducing, for example, sparsity and features selection elements. |
|---|---|
| AbstractList | In this manuscript, we consider well-known multi-task learning (MTL) models from the literature for linear regression problems, such as clustered MTL or weakly constrained MTL. We propose novel reformulations of the training problem for these models, based on mixed-integer quadratic programming (MIQP) techniques. We show that our approach allows to drive the optimization process up to certified global optimality, exploiting popular off-the-shelf software solvers. By computational experiments on both synthetic and real-world datasets, we show that this strategy generally leads to improvements in terms of the predictive performance of the models, if compared to the classical local optimization techniques, based on alternating minimization strategies, that are usually employed. We also suggest a number of possible extensions of our model that should further improve the quality of the obtained regressors, introducing, for example, sparsity and features selection elements. |
| Author | Lapucci, Matteo Pucci, Davide |
| Author_xml | – sequence: 1 givenname: Matteo surname: Lapucci fullname: Lapucci, Matteo – sequence: 2 givenname: Davide surname: Pucci fullname: Pucci, Davide |
| BookMark | eNpNkM1OwzAQhC1UJErpjQfIA5DivzjJEVX8VCqCA5ytjb2OUpK42KkEb09CK8Rpd2dHnzRzSWa975GQa0ZXohTytmt6XHHKBeX0jMy5kjQVGWWzf_sFWca4o5RyxiXPszl5fW6-0KZNP2CNIfk8gA0wNCbZB18H6EZqnQR0PnSHdnz4PibeJeMxNOkA8SNpEUI_uTpvsY1X5NxBG3F5mgvy_nD_tn5Kty-Pm_XdNgUh6JCarGSFrIwxLneVUsJRYwoneVaiLHKsGM8Lo5TLEGThQE52VghrDFqpKrEgmyPXetjpfWg6CN_aQ6N_BR9qDWEM0qLGvGTOlSwf4ZJyCwKFc1QK61RJKxhZN0eWCT7GMe0fj1E9launcvWpXPEDNOtwfw |
| Cites_doi | 10.1609/aaai.v29i1.9581 10.1609/aaai.v27i1.8577 10.1145/1645953.1646169 10.1214/16-STS602 10.1109/ICCV.2011.6126288 10.1007/s10589-019-00134-5 10.1561/9781601984616 10.1145/2538028 10.1145/2556195.2556264 10.1145/2020408.2020423 10.1016/j.ejor.2015.06.081 10.1109/ICCV.2015.426 10.1007/s10994-007-5040-8 10.1007/s10589-016-9832-2 10.1007/s10589-021-00288-1 10.1137/0916069 10.1109/TCBB.2010.22 10.1023/A:1007379606734 10.1214/15-AOS1388 10.1186/1471-2105-11-181 10.1109/TITS.2016.2598356 10.1287/ijoc.2020.1031 10.1109/TPAMI.2015.2452911 10.2307/2348496 10.1109/TBME.2009.2036000 10.21437/Interspeech.2015-265 10.1109/ICASSP.2015.7178814 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/mine.2023020 |
| DatabaseName | CrossRef Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2640-3501 |
| EndPage | 16 |
| ExternalDocumentID | oai_doaj_org_article_e791ff917259402da3e3ff043df690ba 10_3934_mine_2023020 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS BCNDV CITATION GROUPED_DOAJ IAO ITC M~E OK1 RAN |
| ID | FETCH-LOGICAL-a330t-c59184bcccf7fb663f0cc8f4259e487eb1278c66f5ea48fa49184183dcced46b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000777879800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2640-3501 |
| IngestDate | Fri Oct 03 12:51:48 EDT 2025 Sat Nov 29 02:56:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a330t-c59184bcccf7fb663f0cc8f4259e487eb1278c66f5ea48fa49184183dcced46b3 |
| OpenAccessLink | https://doaj.org/article/e791ff917259402da3e3ff043df690ba |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e791ff917259402da3e3ff043df690ba crossref_primary_10_3934_mine_2023020 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Mathematics in engineering |
| PublicationYear | 2023 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/mine.2023020-22 key-10.3934/mine.2023020-23 key-10.3934/mine.2023020-20 key-10.3934/mine.2023020-42 key-10.3934/mine.2023020-21 key-10.3934/mine.2023020-43 key-10.3934/mine.2023020-26 key-10.3934/mine.2023020-27 key-10.3934/mine.2023020-24 key-10.3934/mine.2023020-25 key-10.3934/mine.2023020-28 key-10.3934/mine.2023020-29 key-10.3934/mine.2023020-40 key-10.3934/mine.2023020-41 key-10.3934/mine.2023020-1 key-10.3934/mine.2023020-2 key-10.3934/mine.2023020-11 key-10.3934/mine.2023020-33 key-10.3934/mine.2023020-3 key-10.3934/mine.2023020-12 key-10.3934/mine.2023020-34 key-10.3934/mine.2023020-4 key-10.3934/mine.2023020-31 key-10.3934/mine.2023020-5 key-10.3934/mine.2023020-10 key-10.3934/mine.2023020-32 key-10.3934/mine.2023020-6 key-10.3934/mine.2023020-15 key-10.3934/mine.2023020-37 key-10.3934/mine.2023020-7 key-10.3934/mine.2023020-16 key-10.3934/mine.2023020-38 key-10.3934/mine.2023020-8 key-10.3934/mine.2023020-13 key-10.3934/mine.2023020-35 key-10.3934/mine.2023020-9 key-10.3934/mine.2023020-14 key-10.3934/mine.2023020-36 key-10.3934/mine.2023020-19 key-10.3934/mine.2023020-17 key-10.3934/mine.2023020-39 key-10.3934/mine.2023020-18 key-10.3934/mine.2023020-30 |
| References_xml | – ident: key-10.3934/mine.2023020-35 – ident: key-10.3934/mine.2023020-21 doi: 10.1609/aaai.v29i1.9581 – ident: key-10.3934/mine.2023020-41 doi: 10.1609/aaai.v27i1.8577 – ident: key-10.3934/mine.2023020-5 doi: 10.1145/1645953.1646169 – ident: key-10.3934/mine.2023020-8 doi: 10.1214/16-STS602 – ident: key-10.3934/mine.2023020-20 – ident: key-10.3934/mine.2023020-32 doi: 10.1109/ICCV.2011.6126288 – ident: key-10.3934/mine.2023020-15 doi: 10.1007/s10589-019-00134-5 – ident: key-10.3934/mine.2023020-24 – ident: key-10.3934/mine.2023020-10 doi: 10.1561/9781601984616 – ident: key-10.3934/mine.2023020-17 – ident: key-10.3934/mine.2023020-30 – ident: key-10.3934/mine.2023020-1 – ident: key-10.3934/mine.2023020-7 – ident: key-10.3934/mine.2023020-34 – ident: key-10.3934/mine.2023020-3 – ident: key-10.3934/mine.2023020-38 – ident: key-10.3934/mine.2023020-40 doi: 10.1145/2538028 – ident: key-10.3934/mine.2023020-2 doi: 10.1145/2556195.2556264 – ident: key-10.3934/mine.2023020-13 doi: 10.1145/2020408.2020423 – ident: key-10.3934/mine.2023020-27 doi: 10.1016/j.ejor.2015.06.081 – ident: key-10.3934/mine.2023020-29 doi: 10.1109/ICCV.2015.426 – ident: key-10.3934/mine.2023020-4 doi: 10.1007/s10994-007-5040-8 – ident: key-10.3934/mine.2023020-42 – ident: key-10.3934/mine.2023020-28 doi: 10.1007/s10589-016-9832-2 – ident: key-10.3934/mine.2023020-14 doi: 10.1007/s10589-021-00288-1 – ident: key-10.3934/mine.2023020-11 doi: 10.1137/0916069 – ident: key-10.3934/mine.2023020-37 doi: 10.1109/TCBB.2010.22 – ident: key-10.3934/mine.2023020-12 doi: 10.1023/A:1007379606734 – ident: key-10.3934/mine.2023020-9 doi: 10.1214/15-AOS1388 – ident: key-10.3934/mine.2023020-23 – ident: key-10.3934/mine.2023020-25 doi: 10.1186/1471-2105-11-181 – ident: key-10.3934/mine.2023020-26 doi: 10.1109/TITS.2016.2598356 – ident: key-10.3934/mine.2023020-19 doi: 10.1287/ijoc.2020.1031 – ident: key-10.3934/mine.2023020-43 doi: 10.1109/TPAMI.2015.2452911 – ident: key-10.3934/mine.2023020-18 doi: 10.2307/2348496 – ident: key-10.3934/mine.2023020-16 – ident: key-10.3934/mine.2023020-31 doi: 10.1109/TBME.2009.2036000 – ident: key-10.3934/mine.2023020-33 – ident: key-10.3934/mine.2023020-39 – ident: key-10.3934/mine.2023020-6 – ident: key-10.3934/mine.2023020-22 doi: 10.21437/Interspeech.2015-265 – ident: key-10.3934/mine.2023020-36 doi: 10.1109/ICASSP.2015.7178814 |
| SSID | ssj0002124275 |
| Score | 2.2186632 |
| Snippet | In this manuscript, we consider well-known multi-task learning (MTL) models from the literature for linear regression problems, such as clustered MTL or weakly... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 1 |
| SubjectTerms | clustered mtl global optimization miqp multitask learning weakly constrained mtl |
| Title | Mixed-integer quadratic programming reformulations of multi-task learning models |
| URI | https://doaj.org/article/e791ff917259402da3e3ff043df690ba |
| Volume | 5 |
| WOSCitedRecordID | wos000777879800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2640-3501 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124275 issn: 2640-3501 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2640-3501 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124275 issn: 2640-3501 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxcDCN6J8yQOMpmntxPEIqBVLqw4gdYsc21dViBaaFDHx2zk7BmVjYckQWbH1Lne-J53eI-Q6SY3nEZqZ1Ekm3KDPMIs4U8Y4YSEXLtHBbEJOJvlspqYtqy8_E9bIAzfA9ZxUfQAkFdinI9exmjsOkAhuAYldGVqjRKoWmfI1GAuyGMi0mXTnioveKzZtt94rPPHW3q07qCXVH-6U0T7Zjc0gvWsOcUC23PKQ7MXGkMa0q47IdLz4dJYFaQe3pu8bbX3gDI3TVbjrnOI22H9GN66KroCGYUFW6-qFRnOIOQ3ON9UxeR4Nnx4eWbRCYJrzpEYkFVKx0hgDEkrsEiAxJgdMOOWQcmDBHcjcZBmkTosctPDLMVstQm5FVvIT0lmulu6UUAUyy4zV_dKrk4m0TKXxum6l4oDVxnXJzQ84xVujeFEgU_AgFh7EIoLYJfceud81Xqc6vMDoFTF6xV_RO_uPj5yTHX-mZjLsgnTq9cZdkm3zUS-q9VX4MfA5_hp-A0ibwYc |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed-integer+quadratic+programming+reformulations+of+multi-task+learning+models&rft.jtitle=Mathematics+in+engineering&rft.au=Matteo+Lapucci&rft.au=Davide+Pucci&rft.date=2023-03-01&rft.pub=AIMS+Press&rft.eissn=2640-3501&rft.volume=5&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.3934%2Fmine.2023020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e791ff917259402da3e3ff043df690ba |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2640-3501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2640-3501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2640-3501&client=summon |