Convergence rates of the modified forward reflected backward splitting algorithm in Banach spaces

Consider the problem of minimizing the sum of two convex functions, one being smooth and the other non-smooth in Banach space. In this paper, we introduce a non-traditional forward-backward splitting method for solving such minimization problem. We establish different convergence estimates under dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics Jg. 8; H. 5; S. 12195 - 12216
Hauptverfasser: Guan, Weibo, Song, Wen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: AIMS Press 01.01.2023
Schlagworte:
ISSN:2473-6988, 2473-6988
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Consider the problem of minimizing the sum of two convex functions, one being smooth and the other non-smooth in Banach space. In this paper, we introduce a non-traditional forward-backward splitting method for solving such minimization problem. We establish different convergence estimates under different stepsize assumptions.
AbstractList Consider the problem of minimizing the sum of two convex functions, one being smooth and the other non-smooth in Banach space. In this paper, we introduce a non-traditional forward-backward splitting method for solving such minimization problem. We establish different convergence estimates under different stepsize assumptions.
Author Song, Wen
Guan, Weibo
Author_xml – sequence: 1
  givenname: Weibo
  surname: Guan
  fullname: Guan, Weibo
– sequence: 2
  givenname: Wen
  surname: Song
  fullname: Song, Wen
BookMark eNpNkM1KxDAUhYOM4DjOzgfIA9gxTdK0Xergz8CAG12X2-Smzdg2QxoU397ODyJ3cQ7nwAf3XJPZ4Ack5DZlK1EKed9DbFeccaHS7ILMucxFosqimP3zV2Q5jjvGGE-55LmcE1j74QtDg4NGGiDiSL2lsUXae-OsQ0OtD98QDA1oO9RxSmrQn8do3HcuRjc0FLrGBxfbnrqBPsIAup1a0DjekEsL3YjLsy7Ix_PT-_o12b69bNYP2wSEYDEpVaEzMEZbNpncKqnBMGuszXQutNAMmEWBtURtRHGolLJcFZimRc2YWJDNiWs87Kp9cD2En8qDq46BD00FITrdYZWWsqw5yhLldCkDWReZ5iXLlJVlXk-suxNLBz-O0-N_vJRVh7Wrw9rVeW3xC_sKdsw
Cites_doi 10.1007/s11228-010-0147-7
10.1080/01630563.2015.1037591
10.48550/arXiv.funct-an/9311001
10.1137/16M105592X
10.1109/78.330356
10.1088/0266-5611/25/1/015005
10.1007/BF00282247
10.1002/cmm4.1088
10.1007/s11590-011-0286-2
10.1155/S1085337597000298
10.1007/1-4020-4396-1
10.1137/18M1207260
10.2140/PJM.1972.40.565
10.1137/0716071
10.1137/110820300
10.1137/S105262340139611X
10.1016/j.na.2010.04.077
10.1007/978-94-009-2121-4
10.1007/s11590-020-01544-9
10.1137/050626090
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2023615
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 12216
ExternalDocumentID oai_doaj_org_article_1949b2e49e4e4e10a4b85c29056f497b
10_3934_math_2023615
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-a330t-968c5addcf08c57f64cad0fdff5c73c3c0a0fe3eb4ecd38d0fd66f268e118b003
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000958597400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:51:48 EDT 2025
Sat Nov 29 06:04:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a330t-968c5addcf08c57f64cad0fdff5c73c3c0a0fe3eb4ecd38d0fd66f268e118b003
OpenAccessLink https://doaj.org/article/1949b2e49e4e4e10a4b85c29056f497b
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_1949b2e49e4e4e10a4b85c29056f497b
crossref_primary_10_3934_math_2023615
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2023615-18
key-10.3934/math.2023615-19
key-10.3934/math.2023615-14
key-10.3934/math.2023615-15
key-10.3934/math.2023615-16
key-10.3934/math.2023615-17
key-10.3934/math.2023615-10
key-10.3934/math.2023615-21
key-10.3934/math.2023615-11
key-10.3934/math.2023615-22
key-10.3934/math.2023615-12
key-10.3934/math.2023615-23
key-10.3934/math.2023615-13
key-10.3934/math.2023615-5
key-10.3934/math.2023615-6
key-10.3934/math.2023615-7
key-10.3934/math.2023615-8
key-10.3934/math.2023615-20
key-10.3934/math.2023615-1
key-10.3934/math.2023615-2
key-10.3934/math.2023615-3
key-10.3934/math.2023615-4
key-10.3934/math.2023615-9
References_xml – ident: key-10.3934/math.2023615-1
  doi: 10.1007/s11228-010-0147-7
– ident: key-10.3934/math.2023615-8
  doi: 10.1080/01630563.2015.1037591
– ident: key-10.3934/math.2023615-15
  doi: 10.48550/arXiv.funct-an/9311001
– ident: key-10.3934/math.2023615-21
  doi: 10.1137/16M105592X
– ident: key-10.3934/math.2023615-2
  doi: 10.1109/78.330356
– ident: key-10.3934/math.2023615-7
  doi: 10.1088/0266-5611/25/1/015005
– ident: key-10.3934/math.2023615-10
  doi: 10.1007/BF00282247
– ident: key-10.3934/math.2023615-6
  doi: 10.1002/cmm4.1088
– ident: key-10.3934/math.2023615-13
– ident: key-10.3934/math.2023615-17
  doi: 10.1007/s11590-011-0286-2
– ident: key-10.3934/math.2023615-14
  doi: 10.1155/S1085337597000298
– ident: key-10.3934/math.2023615-16
  doi: 10.1007/1-4020-4396-1
– ident: key-10.3934/math.2023615-5
  doi: 10.1137/18M1207260
– ident: key-10.3934/math.2023615-18
– ident: key-10.3934/math.2023615-11
  doi: 10.2140/PJM.1972.40.565
– ident: key-10.3934/math.2023615-22
– ident: key-10.3934/math.2023615-4
  doi: 10.1137/0716071
– ident: key-10.3934/math.2023615-19
  doi: 10.1137/110820300
– ident: key-10.3934/math.2023615-20
  doi: 10.1137/S105262340139611X
– ident: key-10.3934/math.2023615-23
  doi: 10.1016/j.na.2010.04.077
– ident: key-10.3934/math.2023615-12
  doi: 10.1007/978-94-009-2121-4
– ident: key-10.3934/math.2023615-9
  doi: 10.1007/s11590-020-01544-9
– ident: key-10.3934/math.2023615-3
  doi: 10.1137/050626090
SSID ssj0002124274
Score 2.2060933
Snippet Consider the problem of minimizing the sum of two convex functions, one being smooth and the other non-smooth in Banach space. In this paper, we introduce a...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 12195
SubjectTerms banach spaces
convergence rate
forward-backward splitting algorithm
Title Convergence rates of the modified forward reflected backward splitting algorithm in Banach spaces
URI https://doaj.org/article/1949b2e49e4e4e10a4b85c29056f497b
Volume 8
WOSCitedRecordID wos000958597400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx5gjBpiO7ZHWrVioBUDSN0i27FpJZqgJjDy27lLAioTC4oURbblWHfJ3XeXy2dCrp1R2ktk-ZTBR1zkJgI_w6JgA9dGeql8Q5n_IGczNZ_rx42tvrAmrKUHbgU3gCBb28Rz7Tkct7HhVgmXaHDcMJu0aH0B9WwEU2iDwSBziLfaSnemGR8A_sNvD8g1In75oA2q_sanTPbJXgcG6V27iAOy5YtDsjv9YVKtjogZYVl484ekp0jrUNEyUBhAV2W-DAAgKcBOLH2lcB_MwUOLxaQcNlUAMZvCZmpeX8r1sl6s6LKgQ1MYt4BerMc6Js-T8dPoPuq2RYgMY3Ed6VQ5AWbJhRguZEi5M3kc8hCEk8wxF5s4eOYt9y5nCrvSNCSp8hBM4Ft8QnpFWfhTQpVLbDCOO5lDWMGFMakCDGCFFjzxqeuTm29BZW8t-0UGUQMKNEOBZp1A-2SIUvwZg5zVTQNoMus0mf2lybP_mOSc7OCa2iTJBenV63d_SbbdR72s1lfNQwLn6ef4C-UXxXE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+rates+of+the+modified+forward+reflected+backward+splitting+algorithm+in+Banach+spaces&rft.jtitle=AIMS+mathematics&rft.au=Guan%2C+Weibo&rft.au=Song%2C+Wen&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=5&rft.spage=12195&rft.epage=12216&rft_id=info:doi/10.3934%2Fmath.2023615&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2023615
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon