Convergence rates of the modified forward reflected backward splitting algorithm in Banach spaces
Consider the problem of minimizing the sum of two convex functions, one being smooth and the other non-smooth in Banach space. In this paper, we introduce a non-traditional forward-backward splitting method for solving such minimization problem. We establish different convergence estimates under dif...
Gespeichert in:
| Veröffentlicht in: | AIMS mathematics Jg. 8; H. 5; S. 12195 - 12216 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
AIMS Press
01.01.2023
|
| Schlagworte: | |
| ISSN: | 2473-6988, 2473-6988 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Consider the problem of minimizing the sum of two convex functions, one being smooth and the other non-smooth in Banach space. In this paper, we introduce a non-traditional forward-backward splitting method for solving such minimization problem. We establish different convergence estimates under different stepsize assumptions. |
|---|---|
| AbstractList | Consider the problem of minimizing the sum of two convex functions, one being smooth and the other non-smooth in Banach space. In this paper, we introduce a non-traditional forward-backward splitting method for solving such minimization problem. We establish different convergence estimates under different stepsize assumptions. |
| Author | Song, Wen Guan, Weibo |
| Author_xml | – sequence: 1 givenname: Weibo surname: Guan fullname: Guan, Weibo – sequence: 2 givenname: Wen surname: Song fullname: Song, Wen |
| BookMark | eNpNkM1KxDAUhYOM4DjOzgfIA9gxTdK0Xergz8CAG12X2-Smzdg2QxoU397ODyJ3cQ7nwAf3XJPZ4Ack5DZlK1EKed9DbFeccaHS7ILMucxFosqimP3zV2Q5jjvGGE-55LmcE1j74QtDg4NGGiDiSL2lsUXae-OsQ0OtD98QDA1oO9RxSmrQn8do3HcuRjc0FLrGBxfbnrqBPsIAup1a0DjekEsL3YjLsy7Ix_PT-_o12b69bNYP2wSEYDEpVaEzMEZbNpncKqnBMGuszXQutNAMmEWBtURtRHGolLJcFZimRc2YWJDNiWs87Kp9cD2En8qDq46BD00FITrdYZWWsqw5yhLldCkDWReZ5iXLlJVlXk-suxNLBz-O0-N_vJRVh7Wrw9rVeW3xC_sKdsw |
| Cites_doi | 10.1007/s11228-010-0147-7 10.1080/01630563.2015.1037591 10.48550/arXiv.funct-an/9311001 10.1137/16M105592X 10.1109/78.330356 10.1088/0266-5611/25/1/015005 10.1007/BF00282247 10.1002/cmm4.1088 10.1007/s11590-011-0286-2 10.1155/S1085337597000298 10.1007/1-4020-4396-1 10.1137/18M1207260 10.2140/PJM.1972.40.565 10.1137/0716071 10.1137/110820300 10.1137/S105262340139611X 10.1016/j.na.2010.04.077 10.1007/978-94-009-2121-4 10.1007/s11590-020-01544-9 10.1137/050626090 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/math.2023615 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 12216 |
| ExternalDocumentID | oai_doaj_org_article_1949b2e49e4e4e10a4b85c29056f497b 10_3934_math_2023615 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
| ID | FETCH-LOGICAL-a330t-968c5addcf08c57f64cad0fdff5c73c3c0a0fe3eb4ecd38d0fd66f268e118b003 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000958597400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:51:48 EDT 2025 Sat Nov 29 06:04:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a330t-968c5addcf08c57f64cad0fdff5c73c3c0a0fe3eb4ecd38d0fd66f268e118b003 |
| OpenAccessLink | https://doaj.org/article/1949b2e49e4e4e10a4b85c29056f497b |
| PageCount | 22 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1949b2e49e4e4e10a4b85c29056f497b crossref_primary_10_3934_math_2023615 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2023 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.2023615-18 key-10.3934/math.2023615-19 key-10.3934/math.2023615-14 key-10.3934/math.2023615-15 key-10.3934/math.2023615-16 key-10.3934/math.2023615-17 key-10.3934/math.2023615-10 key-10.3934/math.2023615-21 key-10.3934/math.2023615-11 key-10.3934/math.2023615-22 key-10.3934/math.2023615-12 key-10.3934/math.2023615-23 key-10.3934/math.2023615-13 key-10.3934/math.2023615-5 key-10.3934/math.2023615-6 key-10.3934/math.2023615-7 key-10.3934/math.2023615-8 key-10.3934/math.2023615-20 key-10.3934/math.2023615-1 key-10.3934/math.2023615-2 key-10.3934/math.2023615-3 key-10.3934/math.2023615-4 key-10.3934/math.2023615-9 |
| References_xml | – ident: key-10.3934/math.2023615-1 doi: 10.1007/s11228-010-0147-7 – ident: key-10.3934/math.2023615-8 doi: 10.1080/01630563.2015.1037591 – ident: key-10.3934/math.2023615-15 doi: 10.48550/arXiv.funct-an/9311001 – ident: key-10.3934/math.2023615-21 doi: 10.1137/16M105592X – ident: key-10.3934/math.2023615-2 doi: 10.1109/78.330356 – ident: key-10.3934/math.2023615-7 doi: 10.1088/0266-5611/25/1/015005 – ident: key-10.3934/math.2023615-10 doi: 10.1007/BF00282247 – ident: key-10.3934/math.2023615-6 doi: 10.1002/cmm4.1088 – ident: key-10.3934/math.2023615-13 – ident: key-10.3934/math.2023615-17 doi: 10.1007/s11590-011-0286-2 – ident: key-10.3934/math.2023615-14 doi: 10.1155/S1085337597000298 – ident: key-10.3934/math.2023615-16 doi: 10.1007/1-4020-4396-1 – ident: key-10.3934/math.2023615-5 doi: 10.1137/18M1207260 – ident: key-10.3934/math.2023615-18 – ident: key-10.3934/math.2023615-11 doi: 10.2140/PJM.1972.40.565 – ident: key-10.3934/math.2023615-22 – ident: key-10.3934/math.2023615-4 doi: 10.1137/0716071 – ident: key-10.3934/math.2023615-19 doi: 10.1137/110820300 – ident: key-10.3934/math.2023615-20 doi: 10.1137/S105262340139611X – ident: key-10.3934/math.2023615-23 doi: 10.1016/j.na.2010.04.077 – ident: key-10.3934/math.2023615-12 doi: 10.1007/978-94-009-2121-4 – ident: key-10.3934/math.2023615-9 doi: 10.1007/s11590-020-01544-9 – ident: key-10.3934/math.2023615-3 doi: 10.1137/050626090 |
| SSID | ssj0002124274 |
| Score | 2.2060933 |
| Snippet | Consider the problem of minimizing the sum of two convex functions, one being smooth and the other non-smooth in Banach space. In this paper, we introduce a... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 12195 |
| SubjectTerms | banach spaces convergence rate forward-backward splitting algorithm |
| Title | Convergence rates of the modified forward reflected backward splitting algorithm in Banach spaces |
| URI | https://doaj.org/article/1949b2e49e4e4e10a4b85c29056f497b |
| Volume | 8 |
| WOSCitedRecordID | wos000958597400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx5gjBpiO7ZHWrVioBUDSN0i27FpJZqgJjDy27lLAioTC4oURbblWHfJ3XeXy2dCrp1R2ktk-ZTBR1zkJgI_w6JgA9dGeql8Q5n_IGczNZ_rx42tvrAmrKUHbgU3gCBb28Rz7Tkct7HhVgmXaHDcMJu0aH0B9WwEU2iDwSBziLfaSnemGR8A_sNvD8g1In75oA2q_sanTPbJXgcG6V27iAOy5YtDsjv9YVKtjogZYVl484ekp0jrUNEyUBhAV2W-DAAgKcBOLH2lcB_MwUOLxaQcNlUAMZvCZmpeX8r1sl6s6LKgQ1MYt4BerMc6Js-T8dPoPuq2RYgMY3Ed6VQ5AWbJhRguZEi5M3kc8hCEk8wxF5s4eOYt9y5nCrvSNCSp8hBM4Ft8QnpFWfhTQpVLbDCOO5lDWMGFMakCDGCFFjzxqeuTm29BZW8t-0UGUQMKNEOBZp1A-2SIUvwZg5zVTQNoMus0mf2lybP_mOSc7OCa2iTJBenV63d_SbbdR72s1lfNQwLn6ef4C-UXxXE |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+rates+of+the+modified+forward+reflected+backward+splitting+algorithm+in+Banach+spaces&rft.jtitle=AIMS+mathematics&rft.au=Guan%2C+Weibo&rft.au=Song%2C+Wen&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=5&rft.spage=12195&rft.epage=12216&rft_id=info:doi/10.3934%2Fmath.2023615&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2023615 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |