Iterative algorithm for solving monotone inclusion and fixed point problem of a finite family of demimetric mappings
The goal of this study is to develop a novel iterative algorithm for approximating the solutions of the monotone inclusion problem and fixed point problem of a finite family of demimetric mappings in the context of a real Hilbert space. The proposed algorithm is based on the inertial extrapolation s...
Uložené v:
| Vydané v: | AIMS mathematics Ročník 8; číslo 8; s. 19334 - 19352 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
AIMS Press
01.01.2023
|
| Predmet: | |
| ISSN: | 2473-6988, 2473-6988 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The goal of this study is to develop a novel iterative algorithm for approximating the solutions of the monotone inclusion problem and fixed point problem of a finite family of demimetric mappings in the context of a real Hilbert space. The proposed algorithm is based on the inertial extrapolation step strategy and combines forward-backward and Tseng's methods. We introduce a demimetric operator with respect to $ M $-norm, where $ M $ is a linear, self-adjoint, positive and bounded operator. The algorithm also includes a new step for solving the fixed point problem of demimetric operators with respect to the $ M $-norm. We study the strong convergence behavior of our algorithm. Furthermore, we demonstrate the numerical efficiency of our algorithm with the help of an example. The result given in this paper extends and generalizes various existing results in the literature. |
|---|---|
| AbstractList | The goal of this study is to develop a novel iterative algorithm for approximating the solutions of the monotone inclusion problem and fixed point problem of a finite family of demimetric mappings in the context of a real Hilbert space. The proposed algorithm is based on the inertial extrapolation step strategy and combines forward-backward and Tseng's methods. We introduce a demimetric operator with respect to $ M $-norm, where $ M $ is a linear, self-adjoint, positive and bounded operator. The algorithm also includes a new step for solving the fixed point problem of demimetric operators with respect to the $ M $-norm. We study the strong convergence behavior of our algorithm. Furthermore, we demonstrate the numerical efficiency of our algorithm with the help of an example. The result given in this paper extends and generalizes various existing results in the literature. |
| Author | Chugh, Renu Anjali Mlaiki, Nabil Mehra, Seema Haque, Salma |
| Author_xml | – sequence: 1 surname: Anjali fullname: Anjali organization: Department of Mathematics, Maharshi Dayanand University, Rohtak 124001, India – sequence: 2 givenname: Seema surname: Mehra fullname: Mehra, Seema organization: Department of Mathematics, Maharshi Dayanand University, Rohtak 124001, India – sequence: 3 givenname: Renu surname: Chugh fullname: Chugh, Renu organization: Department of Mathematics, Gurugram University, Gurugram 122413, India – sequence: 4 givenname: Salma surname: Haque fullname: Haque, Salma organization: Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia – sequence: 5 givenname: Nabil surname: Mlaiki fullname: Mlaiki, Nabil organization: Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia |
| BookMark | eNpN0ctKAzEUBuAgFay1Ox8gD-DU3DqXpRQvhYIbXQ9nJidtyiQZMrHYt3dqi7g6N_jO4r8lEx88EnLP2UJWUj06SLuFYEJWZX5FpkIVMsurspz862_IfBj2jDHBhRKFmpK0Thgh2QNS6LYh2rRz1IRIh9AdrN9SF3xI4ydqfdt9DTZ4Cl5TY79R0z5Yn2gfQ9Oho8FQGA_eJqQGnO2Op5VGZx2maFvqoO9Hc7gj1wa6AeeXOiOfL88fq7ds8_66Xj1tMpCSpayUwoilXGpZMGwbVOMIbV6UeVlyLrSQDeYF8krlBjjHphIFVhxMw4oloJQzsj67OsC-7qN1EI91AFv_LkLc1hCTbTusOTTINQg18sqABtBLVSo--rkpqmq0Hs5WG8MwRDR_Hmf1KYD6FEB9CUD-AOsnfUI |
| Cites_doi | 10.3390/math8030378 10.3934/math.2023468 10.1007/s40065-018-0236-2 10.1007/s10851-014-0523-2 10.1080/02331934.2015.1020943 10.1137/060675319 10.1137/S0363012998338806 10.23952/jnva.6.2022.3.07 10.47509/IJMSOR.2022.v02i01.04 10.1155/2012/109236 10.3934/math.2023363 10.1007/s40863-022-00283-2 10.1016/S0377-0427(02)00906-8 10.23952/jnva.5.2021.1.06 10.1016/0041-5553(64)90137-5 10.1137/0716071 10.1007/s40863-020-00196-y 10.1007/s11075-019-00688-9 10.1016/j.amc.2014.10.130 10.3934/math.2023220 10.1007/978-1-4419-9467-7 10.24193/fpt-ro.2018.1.32 10.1007/s10092-018-0292-1 10.1080/00207160.2022.2068146 10.1137/050626090 10.1007/s11075-017-0411-0 10.1080/02331934.2019.1646742 10.7551/mitpress/8996.001.0001 10.1112/S0024610702003332 10.1109/ACCESS.2021.3053141 10.1002/mma.7875 10.1007/978-3-642-30901-4 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/math.2023986 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 19352 |
| ExternalDocumentID | oai_doaj_org_article_1abe1da246784fadaad5484167e6f799 10_3934_math_2023986 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
| ID | FETCH-LOGICAL-a330t-832f2535d370ecbe42f2ac678688112d23be67e1946fa11eb927e91afb075ae33 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001014649300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:39:07 EDT 2025 Sat Nov 29 06:04:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a330t-832f2535d370ecbe42f2ac678688112d23be67e1946fa11eb927e91afb075ae33 |
| OpenAccessLink | https://doaj.org/article/1abe1da246784fadaad5484167e6f799 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1abe1da246784fadaad5484167e6f799 crossref_primary_10_3934_math_2023986 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2023 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.2023986-19 key-10.3934/math.2023986-17 key-10.3934/math.2023986-18 key-10.3934/math.2023986-15 key-10.3934/math.2023986-37 key-10.3934/math.2023986-16 key-10.3934/math.2023986-13 key-10.3934/math.2023986-35 key-10.3934/math.2023986-14 key-10.3934/math.2023986-36 key-10.3934/math.2023986-11 key-10.3934/math.2023986-33 key-10.3934/math.2023986-12 key-10.3934/math.2023986-34 key-10.3934/math.2023986-31 key-10.3934/math.2023986-10 key-10.3934/math.2023986-32 key-10.3934/math.2023986-30 key-10.3934/math.2023986-2 key-10.3934/math.2023986-3 key-10.3934/math.2023986-1 key-10.3934/math.2023986-6 key-10.3934/math.2023986-7 key-10.3934/math.2023986-4 key-10.3934/math.2023986-5 key-10.3934/math.2023986-28 key-10.3934/math.2023986-29 key-10.3934/math.2023986-8 key-10.3934/math.2023986-26 key-10.3934/math.2023986-9 key-10.3934/math.2023986-27 key-10.3934/math.2023986-24 key-10.3934/math.2023986-25 key-10.3934/math.2023986-22 key-10.3934/math.2023986-23 key-10.3934/math.2023986-20 key-10.3934/math.2023986-21 |
| References_xml | – ident: key-10.3934/math.2023986-5 doi: 10.3390/math8030378 – ident: key-10.3934/math.2023986-23 doi: 10.3934/math.2023468 – ident: key-10.3934/math.2023986-3 doi: 10.1007/s40065-018-0236-2 – ident: key-10.3934/math.2023986-33 – ident: key-10.3934/math.2023986-10 doi: 10.1007/s10851-014-0523-2 – ident: key-10.3934/math.2023986-34 doi: 10.1080/02331934.2015.1020943 – ident: key-10.3934/math.2023986-36 doi: 10.1137/060675319 – ident: key-10.3934/math.2023986-15 doi: 10.1137/S0363012998338806 – ident: key-10.3934/math.2023986-16 doi: 10.23952/jnva.6.2022.3.07 – ident: key-10.3934/math.2023986-22 – ident: key-10.3934/math.2023986-17 doi: 10.47509/IJMSOR.2022.v02i01.04 – ident: key-10.3934/math.2023986-9 doi: 10.1155/2012/109236 – ident: key-10.3934/math.2023986-24 doi: 10.3934/math.2023363 – ident: key-10.3934/math.2023986-28 doi: 10.1007/s40863-022-00283-2 – ident: key-10.3934/math.2023986-7 – ident: key-10.3934/math.2023986-20 doi: 10.1016/S0377-0427(02)00906-8 – ident: key-10.3934/math.2023986-4 doi: 10.23952/jnva.5.2021.1.06 – ident: key-10.3934/math.2023986-29 doi: 10.1016/0041-5553(64)90137-5 – ident: key-10.3934/math.2023986-18 doi: 10.1137/0716071 – ident: key-10.3934/math.2023986-26 doi: 10.1007/s40863-020-00196-y – ident: key-10.3934/math.2023986-32 – ident: key-10.3934/math.2023986-11 doi: 10.1007/s11075-019-00688-9 – ident: key-10.3934/math.2023986-12 doi: 10.1016/j.amc.2014.10.130 – ident: key-10.3934/math.2023986-25 doi: 10.3934/math.2023220 – ident: key-10.3934/math.2023986-30 doi: 10.1007/978-1-4419-9467-7 – ident: key-10.3934/math.2023986-37 doi: 10.24193/fpt-ro.2018.1.32 – ident: key-10.3934/math.2023986-19 doi: 10.1007/s10092-018-0292-1 – ident: key-10.3934/math.2023986-21 doi: 10.1080/00207160.2022.2068146 – ident: key-10.3934/math.2023986-2 doi: 10.1137/050626090 – ident: key-10.3934/math.2023986-14 doi: 10.1007/s11075-017-0411-0 – ident: key-10.3934/math.2023986-8 doi: 10.1080/02331934.2019.1646742 – ident: key-10.3934/math.2023986-13 doi: 10.7551/mitpress/8996.001.0001 – ident: key-10.3934/math.2023986-35 doi: 10.1112/S0024610702003332 – ident: key-10.3934/math.2023986-1 doi: 10.1109/ACCESS.2021.3053141 – ident: key-10.3934/math.2023986-6 – ident: key-10.3934/math.2023986-27 doi: 10.1002/mma.7875 – ident: key-10.3934/math.2023986-31 doi: 10.1007/978-3-642-30901-4 |
| SSID | ssj0002124274 |
| Score | 2.2537928 |
| Snippet | The goal of this study is to develop a novel iterative algorithm for approximating the solutions of the monotone inclusion problem and fixed point problem of a... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 19334 |
| SubjectTerms | fixed point problem forward-backward splitting algorithm monotone inclusion problem strong convergence |
| Title | Iterative algorithm for solving monotone inclusion and fixed point problem of a finite family of demimetric mappings |
| URI | https://doaj.org/article/1abe1da246784fadaad5484167e6f799 |
| Volume | 8 |
| WOSCitedRecordID | wos001014649300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx5gjJrEaWKPgFqBRCsGQN2i8yOlUptUbYqY-O3cJaEqEwtLpMRWZH13tj9fLt8xdi3BoOMExksiq7zI6NgD3zoPoOtAxoFTVfL421MyHMrRSD1vlPqinLBaHrgGrhOAdoGFECe0jDKwABZJNtKIxMVZoqpf95D1bBymaA3GBTnC81ad6S6UiDrI_-jbA8ndxb_2oA2p_mpP6e-zvYYM8tt6EAdsy-WHbHewVlJdHrHysZI9xjWJw3Rc4FH-fcaRaHL0GYoFcHSjggS1-SQ30xXFvjjklmeTT2f5vJjkJW-KxvAi44ANxDJ5HdigR5QeP6O6WobPgNQaxstj9trvvdw_eE2lBA-E8EsPp2UWdkXXisR3RrsIb8EgYrGUSKhsKLRDwAIVxRkEgdMqTNAKkGlkDOCEOGGtHId6yrhOpME232YaewdaOQitFqGyxibKyTa7-cEundeCGCkeJAjjlDBOG4zb7I6AXfchGevqARo3bYyb_mXcs_94yTnboTHVcZML1ioXK3fJts1HOVkuriq_wevgq_cNIMvNsQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+algorithm+for+solving+monotone+inclusion+and+fixed+point+problem+of+a+finite+family+of+demimetric+mappings&rft.jtitle=AIMS+mathematics&rft.au=Anjali&rft.au=Mehra%2C+Seema&rft.au=Chugh%2C+Renu&rft.au=Haque%2C+Salma&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=8&rft.spage=19334&rft.epage=19352&rft_id=info:doi/10.3934%2Fmath.2023986&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2023986 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |