Iterative algorithm for solving monotone inclusion and fixed point problem of a finite family of demimetric mappings

The goal of this study is to develop a novel iterative algorithm for approximating the solutions of the monotone inclusion problem and fixed point problem of a finite family of demimetric mappings in the context of a real Hilbert space. The proposed algorithm is based on the inertial extrapolation s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:AIMS mathematics Ročník 8; číslo 8; s. 19334 - 19352
Hlavní autori: Anjali, Mehra, Seema, Chugh, Renu, Haque, Salma, Mlaiki, Nabil
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: AIMS Press 01.01.2023
Predmet:
ISSN:2473-6988, 2473-6988
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The goal of this study is to develop a novel iterative algorithm for approximating the solutions of the monotone inclusion problem and fixed point problem of a finite family of demimetric mappings in the context of a real Hilbert space. The proposed algorithm is based on the inertial extrapolation step strategy and combines forward-backward and Tseng's methods. We introduce a demimetric operator with respect to $ M $-norm, where $ M $ is a linear, self-adjoint, positive and bounded operator. The algorithm also includes a new step for solving the fixed point problem of demimetric operators with respect to the $ M $-norm. We study the strong convergence behavior of our algorithm. Furthermore, we demonstrate the numerical efficiency of our algorithm with the help of an example. The result given in this paper extends and generalizes various existing results in the literature.
AbstractList The goal of this study is to develop a novel iterative algorithm for approximating the solutions of the monotone inclusion problem and fixed point problem of a finite family of demimetric mappings in the context of a real Hilbert space. The proposed algorithm is based on the inertial extrapolation step strategy and combines forward-backward and Tseng's methods. We introduce a demimetric operator with respect to $ M $-norm, where $ M $ is a linear, self-adjoint, positive and bounded operator. The algorithm also includes a new step for solving the fixed point problem of demimetric operators with respect to the $ M $-norm. We study the strong convergence behavior of our algorithm. Furthermore, we demonstrate the numerical efficiency of our algorithm with the help of an example. The result given in this paper extends and generalizes various existing results in the literature.
Author Chugh, Renu
Anjali
Mlaiki, Nabil
Mehra, Seema
Haque, Salma
Author_xml – sequence: 1
  surname: Anjali
  fullname: Anjali
  organization: Department of Mathematics, Maharshi Dayanand University, Rohtak 124001, India
– sequence: 2
  givenname: Seema
  surname: Mehra
  fullname: Mehra, Seema
  organization: Department of Mathematics, Maharshi Dayanand University, Rohtak 124001, India
– sequence: 3
  givenname: Renu
  surname: Chugh
  fullname: Chugh, Renu
  organization: Department of Mathematics, Gurugram University, Gurugram 122413, India
– sequence: 4
  givenname: Salma
  surname: Haque
  fullname: Haque, Salma
  organization: Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
– sequence: 5
  givenname: Nabil
  surname: Mlaiki
  fullname: Mlaiki, Nabil
  organization: Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
BookMark eNpN0ctKAzEUBuAgFay1Ox8gD-DU3DqXpRQvhYIbXQ9nJidtyiQZMrHYt3dqi7g6N_jO4r8lEx88EnLP2UJWUj06SLuFYEJWZX5FpkIVMsurspz862_IfBj2jDHBhRKFmpK0Thgh2QNS6LYh2rRz1IRIh9AdrN9SF3xI4ydqfdt9DTZ4Cl5TY79R0z5Yn2gfQ9Oho8FQGA_eJqQGnO2Op5VGZx2maFvqoO9Hc7gj1wa6AeeXOiOfL88fq7ds8_66Xj1tMpCSpayUwoilXGpZMGwbVOMIbV6UeVlyLrSQDeYF8krlBjjHphIFVhxMw4oloJQzsj67OsC-7qN1EI91AFv_LkLc1hCTbTusOTTINQg18sqABtBLVSo--rkpqmq0Hs5WG8MwRDR_Hmf1KYD6FEB9CUD-AOsnfUI
Cites_doi 10.3390/math8030378
10.3934/math.2023468
10.1007/s40065-018-0236-2
10.1007/s10851-014-0523-2
10.1080/02331934.2015.1020943
10.1137/060675319
10.1137/S0363012998338806
10.23952/jnva.6.2022.3.07
10.47509/IJMSOR.2022.v02i01.04
10.1155/2012/109236
10.3934/math.2023363
10.1007/s40863-022-00283-2
10.1016/S0377-0427(02)00906-8
10.23952/jnva.5.2021.1.06
10.1016/0041-5553(64)90137-5
10.1137/0716071
10.1007/s40863-020-00196-y
10.1007/s11075-019-00688-9
10.1016/j.amc.2014.10.130
10.3934/math.2023220
10.1007/978-1-4419-9467-7
10.24193/fpt-ro.2018.1.32
10.1007/s10092-018-0292-1
10.1080/00207160.2022.2068146
10.1137/050626090
10.1007/s11075-017-0411-0
10.1080/02331934.2019.1646742
10.7551/mitpress/8996.001.0001
10.1112/S0024610702003332
10.1109/ACCESS.2021.3053141
10.1002/mma.7875
10.1007/978-3-642-30901-4
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2023986
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 19352
ExternalDocumentID oai_doaj_org_article_1abe1da246784fadaad5484167e6f799
10_3934_math_2023986
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-a330t-832f2535d370ecbe42f2ac678688112d23be67e1946fa11eb927e91afb075ae33
IEDL.DBID DOA
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001014649300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:39:07 EDT 2025
Sat Nov 29 06:04:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a330t-832f2535d370ecbe42f2ac678688112d23be67e1946fa11eb927e91afb075ae33
OpenAccessLink https://doaj.org/article/1abe1da246784fadaad5484167e6f799
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_1abe1da246784fadaad5484167e6f799
crossref_primary_10_3934_math_2023986
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2023986-19
key-10.3934/math.2023986-17
key-10.3934/math.2023986-18
key-10.3934/math.2023986-15
key-10.3934/math.2023986-37
key-10.3934/math.2023986-16
key-10.3934/math.2023986-13
key-10.3934/math.2023986-35
key-10.3934/math.2023986-14
key-10.3934/math.2023986-36
key-10.3934/math.2023986-11
key-10.3934/math.2023986-33
key-10.3934/math.2023986-12
key-10.3934/math.2023986-34
key-10.3934/math.2023986-31
key-10.3934/math.2023986-10
key-10.3934/math.2023986-32
key-10.3934/math.2023986-30
key-10.3934/math.2023986-2
key-10.3934/math.2023986-3
key-10.3934/math.2023986-1
key-10.3934/math.2023986-6
key-10.3934/math.2023986-7
key-10.3934/math.2023986-4
key-10.3934/math.2023986-5
key-10.3934/math.2023986-28
key-10.3934/math.2023986-29
key-10.3934/math.2023986-8
key-10.3934/math.2023986-26
key-10.3934/math.2023986-9
key-10.3934/math.2023986-27
key-10.3934/math.2023986-24
key-10.3934/math.2023986-25
key-10.3934/math.2023986-22
key-10.3934/math.2023986-23
key-10.3934/math.2023986-20
key-10.3934/math.2023986-21
References_xml – ident: key-10.3934/math.2023986-5
  doi: 10.3390/math8030378
– ident: key-10.3934/math.2023986-23
  doi: 10.3934/math.2023468
– ident: key-10.3934/math.2023986-3
  doi: 10.1007/s40065-018-0236-2
– ident: key-10.3934/math.2023986-33
– ident: key-10.3934/math.2023986-10
  doi: 10.1007/s10851-014-0523-2
– ident: key-10.3934/math.2023986-34
  doi: 10.1080/02331934.2015.1020943
– ident: key-10.3934/math.2023986-36
  doi: 10.1137/060675319
– ident: key-10.3934/math.2023986-15
  doi: 10.1137/S0363012998338806
– ident: key-10.3934/math.2023986-16
  doi: 10.23952/jnva.6.2022.3.07
– ident: key-10.3934/math.2023986-22
– ident: key-10.3934/math.2023986-17
  doi: 10.47509/IJMSOR.2022.v02i01.04
– ident: key-10.3934/math.2023986-9
  doi: 10.1155/2012/109236
– ident: key-10.3934/math.2023986-24
  doi: 10.3934/math.2023363
– ident: key-10.3934/math.2023986-28
  doi: 10.1007/s40863-022-00283-2
– ident: key-10.3934/math.2023986-7
– ident: key-10.3934/math.2023986-20
  doi: 10.1016/S0377-0427(02)00906-8
– ident: key-10.3934/math.2023986-4
  doi: 10.23952/jnva.5.2021.1.06
– ident: key-10.3934/math.2023986-29
  doi: 10.1016/0041-5553(64)90137-5
– ident: key-10.3934/math.2023986-18
  doi: 10.1137/0716071
– ident: key-10.3934/math.2023986-26
  doi: 10.1007/s40863-020-00196-y
– ident: key-10.3934/math.2023986-32
– ident: key-10.3934/math.2023986-11
  doi: 10.1007/s11075-019-00688-9
– ident: key-10.3934/math.2023986-12
  doi: 10.1016/j.amc.2014.10.130
– ident: key-10.3934/math.2023986-25
  doi: 10.3934/math.2023220
– ident: key-10.3934/math.2023986-30
  doi: 10.1007/978-1-4419-9467-7
– ident: key-10.3934/math.2023986-37
  doi: 10.24193/fpt-ro.2018.1.32
– ident: key-10.3934/math.2023986-19
  doi: 10.1007/s10092-018-0292-1
– ident: key-10.3934/math.2023986-21
  doi: 10.1080/00207160.2022.2068146
– ident: key-10.3934/math.2023986-2
  doi: 10.1137/050626090
– ident: key-10.3934/math.2023986-14
  doi: 10.1007/s11075-017-0411-0
– ident: key-10.3934/math.2023986-8
  doi: 10.1080/02331934.2019.1646742
– ident: key-10.3934/math.2023986-13
  doi: 10.7551/mitpress/8996.001.0001
– ident: key-10.3934/math.2023986-35
  doi: 10.1112/S0024610702003332
– ident: key-10.3934/math.2023986-1
  doi: 10.1109/ACCESS.2021.3053141
– ident: key-10.3934/math.2023986-6
– ident: key-10.3934/math.2023986-27
  doi: 10.1002/mma.7875
– ident: key-10.3934/math.2023986-31
  doi: 10.1007/978-3-642-30901-4
SSID ssj0002124274
Score 2.2537928
Snippet The goal of this study is to develop a novel iterative algorithm for approximating the solutions of the monotone inclusion problem and fixed point problem of a...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 19334
SubjectTerms fixed point problem
forward-backward splitting algorithm
monotone inclusion problem
strong convergence
Title Iterative algorithm for solving monotone inclusion and fixed point problem of a finite family of demimetric mappings
URI https://doaj.org/article/1abe1da246784fadaad5484167e6f799
Volume 8
WOSCitedRecordID wos001014649300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx5gjJrEaWKPgFqBRCsGQN2i8yOlUptUbYqY-O3cJaEqEwtLpMRWZH13tj9fLt8xdi3BoOMExksiq7zI6NgD3zoPoOtAxoFTVfL421MyHMrRSD1vlPqinLBaHrgGrhOAdoGFECe0jDKwABZJNtKIxMVZoqpf95D1bBymaA3GBTnC81ad6S6UiDrI_-jbA8ndxb_2oA2p_mpP6e-zvYYM8tt6EAdsy-WHbHewVlJdHrHysZI9xjWJw3Rc4FH-fcaRaHL0GYoFcHSjggS1-SQ30xXFvjjklmeTT2f5vJjkJW-KxvAi44ANxDJ5HdigR5QeP6O6WobPgNQaxstj9trvvdw_eE2lBA-E8EsPp2UWdkXXisR3RrsIb8EgYrGUSKhsKLRDwAIVxRkEgdMqTNAKkGlkDOCEOGGtHId6yrhOpME232YaewdaOQitFqGyxibKyTa7-cEundeCGCkeJAjjlDBOG4zb7I6AXfchGevqARo3bYyb_mXcs_94yTnboTHVcZML1ioXK3fJts1HOVkuriq_wevgq_cNIMvNsQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+algorithm+for+solving+monotone+inclusion+and+fixed+point+problem+of+a+finite+family+of+demimetric+mappings&rft.jtitle=AIMS+mathematics&rft.au=Anjali&rft.au=Mehra%2C+Seema&rft.au=Chugh%2C+Renu&rft.au=Haque%2C+Salma&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=8&rft.spage=19334&rft.epage=19352&rft_id=info:doi/10.3934%2Fmath.2023986&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2023986
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon