Pyleoclim: Paleoclimate Timeseries Analysis and Visualization With Python
We present a Python package geared toward the intuitive analysis and visualization of paleoclimate timeseries, Pyleoclim. The code is open‐source, object‐oriented, and built upon the standard scientific Python stack, allowing users to take advantage of a large collection of existing and emerging tec...
Uloženo v:
| Vydáno v: | Paleoceanography and paleoclimatology Ročník 37; číslo 10 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken
Blackwell Publishing Ltd
01.10.2022
|
| Témata: | |
| ISSN: | 2572-4517, 2572-4525 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We present a Python package geared toward the intuitive analysis and visualization of paleoclimate timeseries, Pyleoclim. The code is open‐source, object‐oriented, and built upon the standard scientific Python stack, allowing users to take advantage of a large collection of existing and emerging techniques. We describe the code's philosophy, structure, and base functionalities and apply it to three paleoclimate problems: (a) orbital‐scale climate variability in a deep‐sea core, illustrating spectral, wavelet, and coherency analysis in the presence of age uncertainties; (b) correlating a high‐resolution speleothem to a climate field, illustrating correlation analysis in the presence of various statistical pitfalls (including age uncertainties); (c) model‐data confrontations in the frequency domain, illustrating the characterization of scaling behavior. We show how the package may be used for transparent and reproducible analysis of paleoclimate and paleoceanographic datasets, supporting Findable, Accessible, Interoperable, and Reusable software and an open science ethos. The package is supported by an extensive documentation and a growing library of tutorials shared publicly as videos and cloud‐executable Jupyter notebooks, to encourage adoption by new users.
Plain Language Summary
This article describes a software application called Pyleoclim meant to help scientists analyze datasets of ordered observations, particularly applicable to the study of past climates, environments, and ecology. Pyleoclim is meant to be used by domain scientists as well as students interested in learning more about Earth's climate through examples provided in the documentation and online tutorials. Pyleoclim is intended to help scientists save time with their analyses, documenting the steps for better transparency, and as such, allows other scientists to reproduce results from previous studies.
Key Points
Pyleoclim makes timeseries analysis tools accessible to practicing scientists, via a user‐friendly Python package
Three Jupyter Notebooks illustrate how Pyleoclim facilitates common and advanced tasks
Pyleoclim can enhance reproducibility and rigor of paleogeoscientific workflows involving timeseries |
|---|---|
| AbstractList | We present a Python package geared toward the intuitive analysis and visualization of paleoclimate timeseries, Pyleoclim. The code is open‐source, object‐oriented, and built upon the standard scientific Python stack, allowing users to take advantage of a large collection of existing and emerging techniques. We describe the code's philosophy, structure, and base functionalities and apply it to three paleoclimate problems: (a) orbital‐scale climate variability in a deep‐sea core, illustrating spectral, wavelet, and coherency analysis in the presence of age uncertainties; (b) correlating a high‐resolution speleothem to a climate field, illustrating correlation analysis in the presence of various statistical pitfalls (including age uncertainties); (c) model‐data confrontations in the frequency domain, illustrating the characterization of scaling behavior. We show how the package may be used for transparent and reproducible analysis of paleoclimate and paleoceanographic datasets, supporting Findable, Accessible, Interoperable, and Reusable software and an open science ethos. The package is supported by an extensive documentation and a growing library of tutorials shared publicly as videos and cloud‐executable Jupyter notebooks, to encourage adoption by new users. We present a Python package geared toward the intuitive analysis and visualization of paleoclimate timeseries, Pyleoclim. The code is open‐source, object‐oriented, and built upon the standard scientific Python stack, allowing users to take advantage of a large collection of existing and emerging techniques. We describe the code's philosophy, structure, and base functionalities and apply it to three paleoclimate problems: (a) orbital‐scale climate variability in a deep‐sea core, illustrating spectral, wavelet, and coherency analysis in the presence of age uncertainties; (b) correlating a high‐resolution speleothem to a climate field, illustrating correlation analysis in the presence of various statistical pitfalls (including age uncertainties); (c) model‐data confrontations in the frequency domain, illustrating the characterization of scaling behavior. We show how the package may be used for transparent and reproducible analysis of paleoclimate and paleoceanographic datasets, supporting Findable, Accessible, Interoperable, and Reusable software and an open science ethos. The package is supported by an extensive documentation and a growing library of tutorials shared publicly as videos and cloud‐executable Jupyter notebooks, to encourage adoption by new users. Plain Language Summary This article describes a software application called Pyleoclim meant to help scientists analyze datasets of ordered observations, particularly applicable to the study of past climates, environments, and ecology. Pyleoclim is meant to be used by domain scientists as well as students interested in learning more about Earth's climate through examples provided in the documentation and online tutorials. Pyleoclim is intended to help scientists save time with their analyses, documenting the steps for better transparency, and as such, allows other scientists to reproduce results from previous studies. Key Points Pyleoclim makes timeseries analysis tools accessible to practicing scientists, via a user‐friendly Python package Three Jupyter Notebooks illustrate how Pyleoclim facilitates common and advanced tasks Pyleoclim can enhance reproducibility and rigor of paleogeoscientific workflows involving timeseries We present a Python package geared toward the intuitive analysis and visualization of paleoclimate timeseries, Pyleoclim . The code is open‐source, object‐oriented, and built upon the standard scientific Python stack, allowing users to take advantage of a large collection of existing and emerging techniques. We describe the code's philosophy, structure, and base functionalities and apply it to three paleoclimate problems: (a) orbital‐scale climate variability in a deep‐sea core, illustrating spectral, wavelet, and coherency analysis in the presence of age uncertainties; (b) correlating a high‐resolution speleothem to a climate field, illustrating correlation analysis in the presence of various statistical pitfalls (including age uncertainties); (c) model‐data confrontations in the frequency domain, illustrating the characterization of scaling behavior. We show how the package may be used for transparent and reproducible analysis of paleoclimate and paleoceanographic datasets, supporting Findable, Accessible, Interoperable, and Reusable software and an open science ethos. The package is supported by an extensive documentation and a growing library of tutorials shared publicly as videos and cloud‐executable Jupyter notebooks, to encourage adoption by new users. This article describes a software application called Pyleoclim meant to help scientists analyze datasets of ordered observations, particularly applicable to the study of past climates, environments, and ecology. Pyleoclim is meant to be used by domain scientists as well as students interested in learning more about Earth's climate through examples provided in the documentation and online tutorials. Pyleoclim is intended to help scientists save time with their analyses, documenting the steps for better transparency, and as such, allows other scientists to reproduce results from previous studies. Pyleoclim makes timeseries analysis tools accessible to practicing scientists, via a user‐friendly Python package Three Jupyter Notebooks illustrate how Pyleoclim facilitates common and advanced tasks Pyleoclim can enhance reproducibility and rigor of paleogeoscientific workflows involving timeseries |
| Author | James, Alexander Ratnakar, Varun Khider, Deborah Zhu, Feng Gil, Yolanda Emile‐Geay, Julien Landers, Jordan |
| Author_xml | – sequence: 1 givenname: Deborah orcidid: 0000-0001-7501-8430 surname: Khider fullname: Khider, Deborah email: khider@usc.edu organization: Information Sciences Institute – sequence: 2 givenname: Julien orcidid: 0000-0001-5920-4751 surname: Emile‐Geay fullname: Emile‐Geay, Julien organization: University of Southern California – sequence: 3 givenname: Feng surname: Zhu fullname: Zhu, Feng organization: Nanjing University of Information Science and Technology – sequence: 4 givenname: Alexander surname: James fullname: James, Alexander organization: University of Southern California – sequence: 5 givenname: Jordan surname: Landers fullname: Landers, Jordan organization: University of Southern California – sequence: 6 givenname: Varun surname: Ratnakar fullname: Ratnakar, Varun organization: Information Sciences Institute – sequence: 7 givenname: Yolanda orcidid: 0000-0001-8465-8341 surname: Gil fullname: Gil, Yolanda organization: Information Sciences Institute |
| BookMark | eNp9kFFLwzAUhYNMcM69-QMKvlpNbpK28a0Mp4PB-jD1sWRJyjKydiYdUn-91Q0RQZ_uefjOvfecczSom9ogdEnwDcEgbgEDFDnGjGNxgobAU4gZBz741iQ9Q-MQNhhjIijLQAzRrOicaZSz27uokEcpWxMt7dYE460JUV5L1wUbIlnr6NmGvXT2Xba2qaMX266jomvXTX2BTivpghkf5wg9Te-Xk8d4vniYTfJ5LCnFLOZ0VQFNVpgJlRGhdWKgUroXTHFTaZoITBMthCBCaYNVlqxYlWZABZGyUnSErg57d7553ZvQlptm7_sXQwkpZJxzEKSnrg-U8k0I3lTlzvfBfFcSXH72Vf7sq8fhF65s-xWx9dK6v0z0YHqzznT_HiiLfL4AAoTRD7C5fXo |
| CitedBy_id | crossref_primary_10_1029_2023GL106585 crossref_primary_10_1016_j_quascirev_2025_109580 crossref_primary_10_1029_2023GL107858 crossref_primary_10_1038_s41597_023_02489_1 crossref_primary_10_1016_j_quascirev_2024_108598 crossref_primary_10_1016_j_palaeo_2025_112911 crossref_primary_10_1016_j_palaeo_2023_111544 crossref_primary_10_1029_2024GL113393 crossref_primary_10_3390_oceans5020021 crossref_primary_10_1016_j_gloplacha_2025_104902 crossref_primary_10_1016_j_gloplacha_2025_104842 crossref_primary_10_5194_cp_20_2117_2024 crossref_primary_10_1016_j_palaeo_2024_112273 crossref_primary_10_1016_j_catena_2024_108341 crossref_primary_10_1029_2025JD043840 crossref_primary_10_1073_pnas_2322926121 crossref_primary_10_1038_s41561_023_01145_y crossref_primary_10_1038_s41467_024_45112_6 crossref_primary_10_1029_2023PA004626 crossref_primary_10_1016_j_quascirev_2025_109613 crossref_primary_10_1073_pnas_2427236122 crossref_primary_10_1029_2023JD039207 crossref_primary_10_1029_2024PA005076 crossref_primary_10_1016_j_gloplacha_2025_105068 crossref_primary_10_1029_2024PA005073 |
| Cites_doi | 10.1093/climsys/dzx002 10.1002/2015MS000447 10.1098/rspa.1998.0193 10.1016/s0098-3004(97)00087-3 10.1103/PhysRevE.94.052201 10.1038/sdata.2016.18 10.5281/zenodo.7093617 10.1029/2000RG000091 10.1126/science.1227079 10.1162/dint_a_00033 10.1029/2004PA001071 10.5281/zenodo.6365841 10.1126/sciadv.aau4996 10.1126/science.1120395 10.1029/2019GL086908 10.1109/MCSE.2007.55 10.1002/joc.1499 10.1029/2011JD017187 10.1103/PhysRevE.92.022126 10.1038/s41592-019-0686-2 10.18637/jss.v029.i05 10.5281/zenodo.6775197 10.1038/s41586-020-2649-2 10.1111/j.2517-6161.1995.tb02031.x 10.3390/e15010327 10.5281/zenodo.1205661 10.1073/pnas.1304328110 10.1029/2018jd029867 10.1021/ac60214a047 10.1016/0167-2789(89)90077-8 10.5194/cp-12-1093-2016 10.1175/JCLI4237.1 10.1073/pnas.1809959116 10.5194/npg-11-561-2004 10.1175/JCLI-D-16-0877.1 10.1103/PhysRevE.90.052150 10.1561/0900000004 10.21105/joss.03021 10.1175/1520-0442(1996)009<3373:mcsdio>2.0.co;2 10.1016/j.quascirev.2011.02.005 10.1016/0167-2789(92)90103-T 10.25080/Majora-92bf1922-00a 10.1029/97jc01734 10.25080/Majora-92bf1922-011 10.5334/jors.148 10.3233/ds-190026 10.1175/1520-0442(1997)010<2147:amtets>2.0.co;2 10.1029/2019gc008392 10.21105/joss.00659 10.1002/2014PA002713 10.1109/proc.1982.12433 10.1002/2016pa003057 10.1029/2000RG000092 10.1111/j.1467-9876.2008.00623.x 10.1016/j.physrep.2018.10.005 10.1002/2016JD024751 10.1175/1520-0477(1998)079<0061:apgtwa>2.0.co;2 10.1038/s41467-022-28210-1 10.5281/zenodo.6999577 10.6084/m9.figshare.1014336 10.1086/160554 10.1038/518125a 10.5194/gchron-3-149-2021 10.1086/118137 10.1175/2010JCLI3654.1 10.1038/nature19798 10.5281/zenodo.5771123 10.1126/science.1141038 10.1029/2000GL012698 10.1007/bf00648343 10.1016/j.epsl.2016.11.048 10.1016/j.epsl.2017.07.036 10.1029/2019rg000657 10.1086/167757 10.1016/s0098-3004(01)00044-9 10.1063/1.5010253 10.5194/cp-15-1251-2019 10.1073/pnas.1412077111 10.1109/mcse.2007.46 10.1038/NGEO1862 10.1038/sdata.2017.88 10.3847/1538-4365/aab766 10.1126/science.1171041 10.3847/1538-4357/ab910d |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7SN 7TG 7TN C1K F1W H95 H96 KL. L.G |
| DOI | 10.1029/2022PA004509 |
| DatabaseName | Wiley Online Library Open Access (WRLC) CrossRef Ecology Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Meteorological & Geoastrophysical Abstracts - Academic Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Ecology |
| EISSN | 2572-4525 |
| EndPage | n/a |
| ExternalDocumentID | 10_1029_2022PA004509 PALO21214 |
| Genre | article |
| GrantInformation_xml | – fundername: Integrative and Collaborative Education and Research funderid: 1541029; 2126510 – fundername: Office of Naval Research funderid: N00014‐21‐1‐2437 – fundername: JP Morgan AI Research Awards – fundername: AGS funderid: AGS2002556 – fundername: Division of Atmospheric and Geospace Sciences funderid: 2002518 |
| GroupedDBID | 0R~ 1OC 24P 33P 88I 8CJ 8FE 8FH AAHHS AAHQN AAMNL AANLZ AASGY AAXRX AAYCA ABCUV ABJNI ABUWG ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADMGS ADOZA ADXAS AEEZP AEIGN AEQDE AEUYN AEUYR AFFPM AFGKR AFKRA AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZQEC BENPR BFHJK BHPHI BKSAR BPHCQ CCPQU D1J D1K DCZOG DRFUL DRSTM DWQXO EBS EDH EJD GNUQQ HCIFZ HGLYW K6- LATKE LEEKS LK5 LUTES LYRES M2P M7R MEWTI MSFUL MSSTM MXFUL MXSTM O9- PCBAR PQQKQ ROL SUPJJ WIN WXSBR ~OA ~~A AAMMB AAYXX ABJIA AEFGJ AEYWJ AFFHD AGHNM AGXDD AGYGG AIDQK AIDYY BANNL CITATION PHGZM PHGZT 1OB 7SN 7TG 7TN C1K F1W H95 H96 KL. L.G |
| ID | FETCH-LOGICAL-a3304-53bf236b049c819dd6e2fcd9dd4c5efd369036d99919cde0c86b4f782391aafc3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000871469400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2572-4517 |
| IngestDate | Wed Aug 13 10:45:16 EDT 2025 Sat Nov 29 06:11:17 EST 2025 Tue Nov 18 21:56:25 EST 2025 Wed Jan 22 16:22:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | Attribution-NonCommercial |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a3304-53bf236b049c819dd6e2fcd9dd4c5efd369036d99919cde0c86b4f782391aafc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8465-8341 0000-0001-5920-4751 0000-0001-7501-8430 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022PA004509 |
| PQID | 2728555291 |
| PQPubID | 54812 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2728555291 crossref_primary_10_1029_2022PA004509 crossref_citationtrail_10_1029_2022PA004509 wiley_primary_10_1029_2022PA004509_PALO21214 |
| PublicationCentury | 2000 |
| PublicationDate | October 2022 2022-10-00 20221001 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Paleoceanography and paleoclimatology |
| PublicationYear | 2022 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2017; 5 2017; 2 2017; 4 2019; 15 2020; 17 2019; 124 2005; 20 1982; 263 2020; 58 1995; 138 2011; 12 1992; 58 2014; 29 2017; 476 2013; 6 2010; 23 1997; 102 2017; 30 2013; 15 2018; 3 2020; 3 2020; 2 2019; 20 1989; 343 1997; 10 2002; 40 2017; 32 2007; 9 2020; 896 2019; 116 2020; 47 1964; 36 2013; 110 2007; 20 1976; 39 2007; 1 1989; 35 2012; 338 1996; 9 2009; 325 2007; 27 2018; 28 2021; 6 2014; 90 2021; 3 2019; 5 1982; 70 2015; 92 2010 1995; 57 1997; 23 2011; 30 2019; 787 2016; 121 2008; 57 2020; 585 2016; 94 2001; 28 2014; 111 1998; 454 2015; 7 2006; 312 2016; 12 2009; 29 2017; 459 2004; 11 2002; 28 2007; 317 2016; 3 2022 2016; 538 2021 2018; 236 1964 2019 2022; 13 2015; 518 2017 2016 2001; 39 1996; 112 2012; 117 1998; 79 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 Pedregosa F. (e_1_2_7_62_1) 2011; 12 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_90_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 Mix A. C. (e_1_2_7_56_1) 1995; 138 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_39_1 Dawdy D. (e_1_2_7_5_1) 1964 Shackleton N. J. (e_1_2_7_75_1) 1995; 138 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_88_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_91_1 e_1_2_7_72_1 National Academies of Sciences, Engineering, and Medicine (e_1_2_7_58_1) 2021 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
| References_xml | – volume: 343 start-page: 874 issue: 2 year: 1989 end-page: 887 article-title: Studies in astronomical time series analysis. III. Fourier transforms, aotocorrelation functions, and cross‐correlation functions of unevenly‐spaced data publication-title: The Astrophysical Journal – volume: 138 start-page: 839 year: 1995 end-page: 847 article-title: Benthic foraminiferal stable isotope stratigraphy from site 846: 0‐1.8Ma publication-title: Proceedings of the Ocean Drilling Program. Scientific results – volume: 325 start-page: 310 issue: 5938 year: 2009 end-page: 314 article-title: Transient simulation of last deglaciation with a new mechanism for bølling‐allerød warming publication-title: Science – volume: 27 start-page: 1119 issue: 9 year: 2007 end-page: 1152 article-title: Empirical orthogonal functions and related techniques in atmospheric science: A review publication-title: International Journal of Climatology – volume: 57 start-page: 399 issue: 4 year: 2008 end-page: 418 article-title: A simple monotone process with application to radiocarbon‐dated depth chronologies publication-title: Journal of the Royal Statistical Society: Series C (Applied Statistics) – volume: 787 start-page: 1 year: 2019 end-page: 97 article-title: Complex network approaches to nonlinear time series analysis publication-title: Physics Reports – volume: 57 start-page: 289 issue: 1 year: 1995 end-page: 300 article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing publication-title: Journal of the Royal Statistical Society: Series B – volume: 36 start-page: 1627 issue: 8 year: 1964 end-page: 1639 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Analytical Chemistry – volume: 4 issue: 1 year: 2017 article-title: A global multiproxy database for temperature reconstructions of the Common Era publication-title: Scientific Data – start-page: 87 year: 2016 end-page: 90 – year: 2021 – volume: 9 start-page: 52 issue: 3 year: 2007 end-page: 55 article-title: Analysis of functional magnetic resonance imaging in Python publication-title: Computing in Science and Enginering – volume: 2 start-page: 108 issue: 1–2 year: 2020 end-page: 121 article-title: FAIR computational workflows publication-title: FAIR Computational Workflows. Data Intelligence – volume: 23 start-page: 929 issue: 9 year: 1997 end-page: 945 article-title: Spectrum: Spectral analysis of unevenly spaced time series publication-title: Computers & Geosciences – volume: 116 start-page: 8728 issue: 18 year: 2019 end-page: 8733 article-title: Climate models can correctly simulate the continuum of global‐average temperature variability publication-title: Proceedings of the National Academy of Sciences – volume: 459 start-page: 362 year: 2017 end-page: 371 article-title: Correlation‐based interpretations of paleoclimate data – Where statistics meet past climates publication-title: Earth and Planetary Science Letters – volume: 23 start-page: 6074 issue: 22 year: 2010 end-page: 6081 article-title: Long‐range dependence and climate noise characteristics of Antarctic temperature data publication-title: Journal of Climate – volume: 312 start-page: 79 issue: 5770 year: 2006 end-page: 83 article-title: Evolution of the eastern tropical Pacific through plio‐pleistocne glaciation publication-title: Science – volume: 1 start-page: 163 issue: 3 year: 2007 end-page: 257 article-title: Long range dependence publication-title: Foundations and Trends in Stochastic Systems – volume: 585 start-page: 357 issue: 7825 year: 2020 end-page: 362 article-title: Array programming with NumPy publication-title: Nature – volume: 12 start-page: 1093 issue: 4 year: 2016 end-page: 1100 article-title: Technical note: The linked paleo data framework – A common tongue for paleoclimatology publication-title: Climate of the Past – volume: 11 start-page: 561 issue: 5/6 year: 2004 end-page: 566 article-title: Application of the cross wavelet transform and wavelet coherence to geophysical time series publication-title: Nonlinear Processes in Geophysics – volume: 13 issue: 1 year: 2022 article-title: A re‐appraisal of the ENSO response to volcanism with paleoclimate data assimilation publication-title: Nature Communications – volume: 90 issue: 5 year: 2014 article-title: Unraveling the cause‐effect relation between time series publication-title: Physical Review E ‐ Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics – year: 2022 – volume: 3 issue: 24 year: 2018 article-title: Climlab: A python toolkit for interactive, process‐oriented climate modeling publication-title: Journal of Open Source Software – volume: 3 start-page: 149 issue: 1 year: 2021 end-page: 169 article-title: geoChronR – An R package to model, analyze, and visualize age‐uncertain data publication-title: Geochronology – volume: 12 start-page: 2825 issue: 85 year: 2011 end-page: 2830 article-title: Scikit‐learn: Machine learning in Python publication-title: Journal of Machine Learning Research – volume: 236 issue: 1 year: 2018 article-title: Understanding the lomb–scargle periodogram publication-title: The Astrophysical Journal ‐ Supplement Series – volume: 17 start-page: 261 issue: 3 year: 2020 end-page: 272 article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python publication-title: Nature Methods – volume: 518 start-page: 125 issue: 7537 year: 2015 end-page: 126 article-title: Programming: Pick up Python publication-title: Nature – volume: 6 issue: 60 year: 2021 article-title: Seaborn: Statistical data visualization publication-title: Journal of Open Source Software – volume: 94 issue: 5 year: 2016 article-title: Information flow and causality as rigorous notions ab initio publication-title: Physical Review E ‐ Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics – year: 2019 – volume: 338 start-page: 496 issue: 6106 year: 2012 end-page: 500 article-title: Detecting causality in complex ecosystems publication-title: Science – volume: 20 issue: 1 year: 2005 article-title: A Pliocene‐Pleistocene stack of 57 globally distributed benthic O records publication-title: Paleoceanography – volume: 79 start-page: 61 issue: 1 year: 1998 end-page: 78 article-title: A practical guide to wavelet analysis publication-title: Bulletin of the American Meteorological Society – volume: 29 start-page: 1 issue: 5 year: 2009 end-page: 19 article-title: Maximum entropy bootstrap for time series: The meboot r package publication-title: Journal of Statistical Software – volume: 476 start-page: 34 year: 2017 end-page: 46 article-title: Improved spectral comparisons of paleoclimate models and observations via proxy system modeling: Implications for multi‐decadal variability publication-title: Earth and Planetary Science Letters – volume: 70 start-page: 1055 issue: 9 year: 1982 end-page: 1096 article-title: Spectrum estimation and harmonic analysis publication-title: Proceedings of the IEEE – year: 1964 – volume: 15 start-page: 327 issue: 1 year: 2013 end-page: 360 article-title: The Liang‐Kleeman information flow: Theory and applications publication-title: Entropy – volume: 32 start-page: 1275 issue: 11 year: 2017 end-page: 1290 article-title: The role of uncertainty in estimating lead/lag relationships in marine sedimentary archives: A case study from the tropical Pacific publication-title: Paleoceanography – volume: 39 start-page: 447 issue: 2 year: 1976 end-page: 462 article-title: Least‐squares frequency analysis of unequally spaced data publication-title: Astrophysics and Space Science – volume: 5 issue: 1 year: 2017 article-title: Xarray: N‐D labeled arrays and datasets in Python publication-title: Journal of Open Research Software – volume: 110 start-page: 12213 issue: 30 year: 2013 end-page: 12218 article-title: Universal fractal scaling in stream chemistry and its implications for solute transport and water quality trend detection publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 58 start-page: 95 issue: 1 year: 1992 end-page: 126 article-title: Singular‐spectrum analysis: A toolkit for short, noisy chaotic signals publication-title: Physica D: Nonlinear Phenomena – volume: 117 issue: D8 year: 2012 article-title: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set publication-title: Journal of Geophysical Research – volume: 35 start-page: 395 issue: 3 year: 1989 end-page: 424 article-title: Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series publication-title: Physica D – volume: 2 issue: 1 year: 2017 article-title: A probabilistic Pliocene–Pleistocene stack of benthic O using a profile hidden Markov model publication-title: Dynamics and Statistics of the Climate System – volume: 263 start-page: 835 issue: 2 year: 1982 end-page: 853 article-title: Studies in astronomical time series analysis. ii. Statistical aspects of spectral analysis of unevenly spaced data publication-title: The Astrophysical Journal – volume: 20 start-page: 4377 issue: 17 year: 2007 end-page: 4401 article-title: Simulation of the last 21,000 years using accelerated transient boundary conditions publication-title: Journal of Climate – start-page: 56 year: 2010 end-page: 61 – year: 2017 article-title: Data analysis in the Earth & environmental sciences (Third ed.) publication-title: FigShare – volume: 30 start-page: 1155 issue: 9 year: 2011 end-page: 1172 article-title: Deconstructing the last glacial termination: The role of millennial and orbital‐scale forcings publication-title: Quaternary Science Reviews – volume: 454 start-page: 903 issue: 1971 year: 1998 end-page: 995 article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non‐stationary time series analysis publication-title: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences – volume: 20 start-page: 3774 issue: 7 year: 2019 end-page: 3781 article-title: The climate data toolbox for MATLAB publication-title: Geochemistry, Geophysics, Geosystems – volume: 28 issue: 7 year: 2018 article-title: Causation and information flow with respect to relative entropy publication-title: Chaos: An interdisciplinary journal of nonlinear science – year: 2010 – volume: 28 start-page: 3187 issue: 16 year: 2001 end-page: 3190 article-title: Singular spectrum analysis for time series with missing data publication-title: Geophysical Research Letters – volume: 28 start-page: 421 issue: 3 year: 2002 end-page: 426 article-title: Redfit: Estimating red‐noise spectra directly from unevenly spaced paleoclimatic time series publication-title: Computers & Geosciences – volume: 121 start-page: 6745 issue: 12 year: 2016 end-page: 6764 article-title: The last millennium climate reanalysis project: Framework and first results publication-title: Journal of Geophysical Research: Atmospheres – volume: 15 start-page: 1251 issue: 4 year: 2019 end-page: 1273 article-title: Last millennium reanalysis with an expanded proxy database and seasonal proxy modeling publication-title: Climate of the Past – volume: 92 issue: 2 year: 2015 article-title: Normalizing the causality between time series publication-title: Physical Review E ‐ Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics – volume: 896 issue: 2 year: 2020 article-title: Systematic search for ‐ray periodicity in active galactic nuclei detected by the fermi large area telescope publication-title: The Astrophysical Journal – volume: 3 issue: 1 year: 2016 article-title: The FAIR Guiding Principles for scientific data management and stewardship publication-title: Scientific Data – volume: 317 start-page: 793 issue: 5839 year: 2007 end-page: 796 article-title: Orbital and millennial Antarctic climate variability over the past 800,000 years publication-title: Science – volume: 39 start-page: 325 issue: 3 year: 2001 end-page: 346 article-title: Glacial cycles: Toward a new paradigm publication-title: Reviews of Geophysics – volume: 9 start-page: 3373 issue: 12 year: 1996 end-page: 3404 article-title: Monte Carlo SSA: Detecting irregular oscillations in the presence of coloured noise publication-title: Journal of Climate – volume: 5 issue: 11 year: 2019 article-title: Detecting and quantifying causal associations in large nonlinear time series datasets publication-title: Science Advances – volume: 7 start-page: 1220 issue: 3 year: 2015 end-page: 1247 article-title: PRYSM: An open‐source framework for PRoxY System Modeling, with applications to oxygen‐isotope systems publication-title: Journal of Advances in Modeling Earth Systems – volume: 40 start-page: 1003 issue: 1 year: 2002 end-page: 1052 article-title: Advanced spectral methods for climatic time series publication-title: Reviews of Geophysics – volume: 124 start-page: 7719 issue: 14 year: 2019 end-page: 7763 article-title: An ensemble data set of sea surface temperature change from 1850: The met office Hadley centre HadSST.4.0.0.0 data set publication-title: Journal of Geophysical Research: Atmospheres – volume: 111 start-page: 16682 issue: 47 year: 2014 end-page: 16687 article-title: Ocean surface temperature variability: Large model–data differences at decadal and longer periods publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 538 start-page: 226 issue: 7624 year: 2016 end-page: 228 article-title: Evolution of global temperature over the past two million years publication-title: Nature – volume: 9 start-page: 90 issue: 3 year: 2007 end-page: 95 article-title: Matplotlib: A 2D graphics environment publication-title: Computing in Science & Engineering – volume: 10 start-page: 2147 issue: 9 year: 1997 end-page: 2153 article-title: A method to estimate the statistical significance of a correlation when the data are serially correlated publication-title: Journal of Climate – volume: 47 issue: 8 year: 2020 article-title: Resolving the differences in the simulated and reconstructed temperature response to volcanism publication-title: Geophysical Research Letters – volume: 102 start-page: 27835 issue: C13 year: 1997 end-page: 27860 article-title: Reduced space optimal analysis for historical data sets: 136 years of Atlantic sea surface temperatures publication-title: Journal of Geophysical Research – volume: 3 start-page: 37 issue: 1 year: 2020 end-page: 59 article-title: Towards fair principles for research software publication-title: Data Science – volume: 29 start-page: 976 issue: 976–989 year: 2014 end-page: 989 article-title: Probabilistic sequence alignment of stratigraphic records publication-title: Paleoceanography – volume: 112 start-page: 1709 issue: 4 year: 1996 end-page: 1729 article-title: Wavelets for period analysis of unevenly sampled time series publication-title: The Astronomical Journal – volume: 6 start-page: 617 issue: 8 year: 2013 end-page: 621 article-title: Variable North Pacific influence on drought in southwestern North America since AD 854 publication-title: Nature Geoscience – volume: 30 start-page: 7157 issue: 18 year: 2017 end-page: 7168 article-title: Long‐range persistence in global surface temperatures explained by linear multibox energy balance models publication-title: Journal of Climate – volume: 58 issue: 2 year: 2020 article-title: The structure of climate variability across scales publication-title: Reviews of Geophysics – volume: 138 start-page: 337 year: 1995 end-page: 356 article-title: Pliocene stable isotope stratigraphy of ODP site 846 publication-title: Proceedings of the Ocean Drilling Program, Scientific Results – ident: e_1_2_7_2_1 doi: 10.1093/climsys/dzx002 – ident: e_1_2_7_6_1 doi: 10.1002/2015MS000447 – ident: e_1_2_7_26_1 doi: 10.1098/rspa.1998.0193 – ident: e_1_2_7_73_1 doi: 10.1016/s0098-3004(97)00087-3 – ident: e_1_2_7_44_1 doi: 10.1103/PhysRevE.94.052201 – ident: e_1_2_7_88_1 doi: 10.1038/sdata.2016.18 – ident: e_1_2_7_33_1 doi: 10.5281/zenodo.7093617 – ident: e_1_2_7_60_1 doi: 10.1029/2000RG000091 – ident: e_1_2_7_77_1 doi: 10.1126/science.1227079 – volume-title: Statistical and probability analysis of hydrologic data, part III: Analysis of variance, covariance and time series year: 1964 ident: e_1_2_7_5_1 – ident: e_1_2_7_17_1 doi: 10.1162/dint_a_00033 – ident: e_1_2_7_47_1 doi: 10.1029/2004PA001071 – ident: e_1_2_7_34_1 doi: 10.5281/zenodo.6365841 – volume: 12 start-page: 2825 issue: 85 year: 2011 ident: e_1_2_7_62_1 article-title: Scikit‐learn: Machine learning in Python publication-title: Journal of Machine Learning Research – ident: e_1_2_7_66_1 doi: 10.1126/sciadv.aau4996 – ident: e_1_2_7_40_1 doi: 10.1126/science.1120395 – ident: e_1_2_7_90_1 doi: 10.1029/2019GL086908 – ident: e_1_2_7_27_1 doi: 10.1109/MCSE.2007.55 – ident: e_1_2_7_21_1 doi: 10.1002/joc.1499 – ident: e_1_2_7_57_1 doi: 10.1029/2011JD017187 – ident: e_1_2_7_43_1 doi: 10.1103/PhysRevE.92.022126 – ident: e_1_2_7_86_1 doi: 10.1038/s41592-019-0686-2 – ident: e_1_2_7_85_1 doi: 10.18637/jss.v029.i05 – ident: e_1_2_7_9_1 doi: 10.5281/zenodo.6775197 – ident: e_1_2_7_22_1 doi: 10.1038/s41586-020-2649-2 – ident: e_1_2_7_4_1 doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: e_1_2_7_41_1 doi: 10.3390/e15010327 – ident: e_1_2_7_35_1 doi: 10.5281/zenodo.1205661 – ident: e_1_2_7_36_1 doi: 10.1073/pnas.1304328110 – ident: e_1_2_7_30_1 doi: 10.1029/2018jd029867 – ident: e_1_2_7_68_1 doi: 10.1021/ac60214a047 – ident: e_1_2_7_83_1 doi: 10.1016/0167-2789(89)90077-8 – ident: e_1_2_7_51_1 doi: 10.5194/cp-12-1093-2016 – volume: 138 start-page: 337 year: 1995 ident: e_1_2_7_75_1 article-title: Pliocene stable isotope stratigraphy of ODP site 846 publication-title: Proceedings of the Ocean Drilling Program, Scientific Results – ident: e_1_2_7_80_1 doi: 10.1175/JCLI4237.1 – ident: e_1_2_7_91_1 doi: 10.1073/pnas.1809959116 – ident: e_1_2_7_19_1 doi: 10.5194/npg-11-561-2004 – ident: e_1_2_7_15_1 doi: 10.1175/JCLI-D-16-0877.1 – ident: e_1_2_7_42_1 doi: 10.1103/PhysRevE.90.052150 – ident: e_1_2_7_67_1 doi: 10.1561/0900000004 – ident: e_1_2_7_87_1 doi: 10.21105/joss.03021 – ident: e_1_2_7_3_1 doi: 10.1175/1520-0442(1996)009<3373:mcsdio>2.0.co;2 – ident: e_1_2_7_37_1 – ident: e_1_2_7_54_1 doi: 10.1016/j.quascirev.2011.02.005 – ident: e_1_2_7_84_1 doi: 10.1016/0167-2789(92)90103-T – ident: e_1_2_7_53_1 doi: 10.25080/Majora-92bf1922-00a – ident: e_1_2_7_29_1 doi: 10.1029/97jc01734 – ident: e_1_2_7_74_1 doi: 10.25080/Majora-92bf1922-011 – ident: e_1_2_7_24_1 doi: 10.5334/jors.148 – ident: e_1_2_7_39_1 doi: 10.3233/ds-190026 – ident: e_1_2_7_8_1 doi: 10.1175/1520-0442(1997)010<2147:amtets>2.0.co;2 – ident: e_1_2_7_18_1 doi: 10.1029/2019gc008392 – ident: e_1_2_7_65_1 doi: 10.21105/joss.00659 – ident: e_1_2_7_46_1 doi: 10.1002/2014PA002713 – ident: e_1_2_7_79_1 doi: 10.1109/proc.1982.12433 – ident: e_1_2_7_31_1 doi: 10.1002/2016pa003057 – ident: e_1_2_7_16_1 doi: 10.1029/2000RG000092 – ident: e_1_2_7_23_1 doi: 10.1111/j.1467-9876.2008.00623.x – ident: e_1_2_7_92_1 doi: 10.1016/j.physrep.2018.10.005 – ident: e_1_2_7_20_1 doi: 10.1002/2016JD024751 – ident: e_1_2_7_81_1 doi: 10.1175/1520-0477(1998)079<0061:apgtwa>2.0.co;2 – ident: e_1_2_7_89_1 doi: 10.1038/s41467-022-28210-1 – ident: e_1_2_7_32_1 doi: 10.5281/zenodo.6999577 – ident: e_1_2_7_10_1 doi: 10.6084/m9.figshare.1014336 – ident: e_1_2_7_69_1 doi: 10.1086/160554 – ident: e_1_2_7_63_1 doi: 10.1038/518125a – ident: e_1_2_7_52_1 doi: 10.5194/gchron-3-149-2021 – ident: e_1_2_7_12_1 doi: 10.1086/118137 – ident: e_1_2_7_13_1 doi: 10.1175/2010JCLI3654.1 – ident: e_1_2_7_76_1 doi: 10.1038/nature19798 – ident: e_1_2_7_11_1 doi: 10.5281/zenodo.5771123 – ident: e_1_2_7_28_1 doi: 10.1126/science.1141038 – ident: e_1_2_7_71_1 doi: 10.1029/2000GL012698 – volume: 138 start-page: 839 year: 1995 ident: e_1_2_7_56_1 article-title: Benthic foraminiferal stable isotope stratigraphy from site 846: 0‐1.8Ma publication-title: Proceedings of the Ocean Drilling Program. Scientific results – ident: e_1_2_7_49_1 doi: 10.1007/bf00648343 – ident: e_1_2_7_25_1 doi: 10.1016/j.epsl.2016.11.048 – ident: e_1_2_7_7_1 doi: 10.1016/j.epsl.2017.07.036 – ident: e_1_2_7_14_1 doi: 10.1029/2019rg000657 – ident: e_1_2_7_64_1 – ident: e_1_2_7_70_1 doi: 10.1086/167757 – ident: e_1_2_7_72_1 doi: 10.1016/s0098-3004(01)00044-9 – ident: e_1_2_7_45_1 doi: 10.1063/1.5010253 – ident: e_1_2_7_78_1 doi: 10.5194/cp-15-1251-2019 – ident: e_1_2_7_38_1 doi: 10.1073/pnas.1412077111 – ident: e_1_2_7_55_1 doi: 10.1109/mcse.2007.46 – ident: e_1_2_7_50_1 doi: 10.1038/NGEO1862 – ident: e_1_2_7_59_1 doi: 10.1038/sdata.2017.88 – ident: e_1_2_7_82_1 doi: 10.3847/1538-4365/aab766 – volume-title: Identifying new community‐driven science themes for NSF's support of paleoclimate research: Proceedings of a workshop year: 2021 ident: e_1_2_7_58_1 – ident: e_1_2_7_48_1 doi: 10.1126/science.1171041 – ident: e_1_2_7_61_1 doi: 10.3847/1538-4357/ab910d |
| SSID | ssj0001934829 |
| Score | 2.3780222 |
| Snippet | We present a Python package geared toward the intuitive analysis and visualization of paleoclimate timeseries, Pyleoclim. The code is open‐source,... We present a Python package geared toward the intuitive analysis and visualization of paleoclimate timeseries, Pyleoclim . The code is open‐source,... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Analysis Climate Climate variability Climatic analysis Correlation analysis Datasets Documentation Ecology Online tutorials Paleoclimate paleoclimate observations Paleoclimatology Python Scaling Scientists Software timeseries analysis Uncertainty Visualization Wavelet analysis |
| Title | Pyleoclim: Paleoclimate Timeseries Analysis and Visualization With Python |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022PA004509 https://www.proquest.com/docview/2728555291 |
| Volume | 37 |
| WOSCitedRecordID | wos000871469400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2572-4525 dateEnd: 20231209 omitProxy: false ssIdentifier: ssj0001934829 issn: 2572-4517 databaseCode: WIN dateStart: 20180101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2572-4525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001934829 issn: 2572-4517 databaseCode: DRFUL dateStart: 20180101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kVfDiW6zWsgc9abDZR5L1VtRqodQg1vYWNrsJBmoqTRX6791J0ocHBfG2SZYh7M5kvpnsfIPQmWfuU-ICFSITFpNNY1LaVRblsTbuRXPOZd5swu31vOFQ-GXCDWphCn6IRcINLCP_XoOByzAryQaAI9NE7cRvASSB-r2qbVMPWjcQ5i9zLAKoWwABG8UkFuO2W559NyKuVgV890pLqLkKWHOP097-77vuoK0Sa-JWoRy7aC1K99DGfd7Ld7aPOv5sFI3VKHm7xr4shwZ64rwsBAiQMzznLMEy1fglyaAEsyjcxINk-or9GXAPHKB---755sEqOytYEvIXFqdhTKgTmvBAGUigtRORWGkzYIpHsaYmZqaOBvAolI6aynNCFhswQYUtZazoIaqk4zQ6QpiHYewQJTRljLkkEoq7TLpaONJsOuM1dDFf2UCVtOPQ_WIU5L-_iQhWF6eGzhez3wu6jR_m1eebFJRGlwXEJZ7RLSLsGrrMt-NXGYHf6j4az22z479NP0Gb8KA40ldHlenkIzpF6-pzmmSTRq6CDVS9fWr3u-Zq0Ol9AaS72jI |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7EB3rxLVar7kFPGmz2kWS9FbG2WGsO1fYWNrsJBmoqTRX6791J0ocHBfG2hGEIuzOZbyY73yB07pnnlLhAhciExWTNuJR2lUV5rE140ZxzmQ-bcDsdr98XfjnnFHphCn6IWcENPCP_XoODQ0G6ZBsAkkyTthO_DpgEGvhWmMEaMLuh1-rMiywCuFsAAhvLJBbjtltefjcqrhcVfA9Lc6y5iFjzkNPY-vfLbqPNEm3iemEeO2gpSnfR2n0-zXeyh1r-ZBAN1SB5u8G-LJcGfOK8MQQokDM8ZS3BMtX4JcmgCbNo3cS9ZPyK_QmwD-yj58Zd97ZplbMVLAkVDIvTMCbUCU2CoAwo0NqJSKy0WTDFo1hTkzVTRwN8FEpHNeU5IYsNnKDCljJW9AAtp8M0OkSYh2HsECU0ZYy5JBKKu0y6WjjSHDvjFXQ53dpAlcTjMP9iEOQ_wIkIFjengi5m0u8F4cYPctXpKQWl22UBcYlnrIsIu4Ku8vP4VUfg19tPJnbb7Ohv4mdovdl9bAftVufhGG2AUHHBr4qWx6OP6AStqs9xko1Oc3v8AkxO29s |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6kVfHiW6zPHPSki20eu423olbFUhfxdVuySRYLtUpbhf57M7up1oOCeAvLMCzJzM43s5lvAPbq7jmjEVIhchlwVXUuZSIdMJEZF16MEELlwyaidrv--ChjP-cUe2EKfojPght6Rv69Rge3rybzbANIkunSdho3EJNgA1-Z4xyZEpRPb5p3ra8yi0T2FgTBzjZpwEUt8tffnZKjSRXfA9MX2pzErHnQaS78-3UXYd7jTdIoDGQJpmxvGWbO83m-oxW4jEdd-6K7nedjEiu_dPCT5K0hSII8IGPeEqJ6htx3BtiGWTRvkofO8InEI-QfWIW75tntyUXgpysECmsYgWBpRlmYuhRBO1hgTGhppo1bcC1sZpjLm1loEEBKbWxV18OUZw5QMFlTKtNsDUq9l55dByLSNAuploZxziNqpRYRV5GRoXIHz0UFDsZbm2hPPY4TMLpJ_gucymRycyqw_yn9WlBu_CC3NT6lxDveIKERrTv7orJWgcP8PH7VkcSN1rWL3jW-8TfxXZiNT5tJ67J9tQlzKFPc8NuC0rD_ZrdhWr8PO4P-jjfID5on3IQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pyleoclim%3A+Paleoclimate+Timeseries+Analysis+and+Visualization+With+Python&rft.jtitle=Paleoceanography+and+paleoclimatology&rft.au=Khider%2C+Deborah&rft.au=Emile%E2%80%90Geay%2C+Julien&rft.au=Zhu%2C+Feng&rft.au=James%2C+Alexander&rft.date=2022-10-01&rft.issn=2572-4517&rft.eissn=2572-4525&rft.volume=37&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2022PA004509&rft.externalDBID=10.1029%252F2022PA004509&rft.externalDocID=PALO21214 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2572-4517&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2572-4517&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2572-4517&client=summon |