Merge-Replay: Efficient IFDS-Based Taint Analysis by Consolidating Equivalent Value Flows

The IFDS-based taint analysis employs two mutually iterative passes: a forward pass that identifies taints and a backward pass that detects aliases. This approach ensures both flow and context sensitivity, leading to remarkable precision. To preserve flow sensitivity, the IFDS-based taint analysis e...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE/ACM International Conference on Automated Software Engineering : [proceedings] s. 319 - 331
Hlavní autori: Gui, Yujiang, He, Dongjie, Xue, Jingling
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 11.09.2023
Predmet:
ISSN:2643-1572
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The IFDS-based taint analysis employs two mutually iterative passes: a forward pass that identifies taints and a backward pass that detects aliases. This approach ensures both flow and context sensitivity, leading to remarkable precision. To preserve flow sensitivity, the IFDS-based taint analysis enhances data abstractions with activation statements that pinpoint the moment they acquire taint. Nonetheless, this mechanism can inadvertently introduce equivalent, yet redundant, value flows. This occurs when distinct activation statements are linked with the same data abstraction, resulting in unnecessary computational and memory-intensive demands on the analysis process. We introduce MergeDroid, a novel approach to improve the efficiency of IFDS-based taint analysis by consolidating equivalent value flows. This involves merging activation statements linked to the same data abstraction from various reachable data facts that are reachable at a given program point during the backward pass. This process generates a representative symbolic activation statement applicable to all equivalent data facts, reducing them to a single symbolic data fact. During the forward pass, when this symbolic data fact returns to its point of creation, the analysis reverts to the original data facts alongside their initial activation statements. This merge-and-replay strategy eliminates redundant value flow propagation, resulting in performance gains. Furthermore, we also improve analysis efficiency and precision by leveraging context-sensitive insights from activation statements. Our evaluation on 40 Android apps demonstrates that MergeDroid significantly enhances IFDS-based taint analysis performance. On average, MergeDroid accelerates analysis by 9.0× while effectively handling 6 more apps scalably. Additionally, it reduces false positives by significantly decreasing reported leak warnings, achieving an average reduction of 19.2%.
AbstractList The IFDS-based taint analysis employs two mutually iterative passes: a forward pass that identifies taints and a backward pass that detects aliases. This approach ensures both flow and context sensitivity, leading to remarkable precision. To preserve flow sensitivity, the IFDS-based taint analysis enhances data abstractions with activation statements that pinpoint the moment they acquire taint. Nonetheless, this mechanism can inadvertently introduce equivalent, yet redundant, value flows. This occurs when distinct activation statements are linked with the same data abstraction, resulting in unnecessary computational and memory-intensive demands on the analysis process. We introduce MergeDroid, a novel approach to improve the efficiency of IFDS-based taint analysis by consolidating equivalent value flows. This involves merging activation statements linked to the same data abstraction from various reachable data facts that are reachable at a given program point during the backward pass. This process generates a representative symbolic activation statement applicable to all equivalent data facts, reducing them to a single symbolic data fact. During the forward pass, when this symbolic data fact returns to its point of creation, the analysis reverts to the original data facts alongside their initial activation statements. This merge-and-replay strategy eliminates redundant value flow propagation, resulting in performance gains. Furthermore, we also improve analysis efficiency and precision by leveraging context-sensitive insights from activation statements. Our evaluation on 40 Android apps demonstrates that MergeDroid significantly enhances IFDS-based taint analysis performance. On average, MergeDroid accelerates analysis by 9.0× while effectively handling 6 more apps scalably. Additionally, it reduces false positives by significantly decreasing reported leak warnings, achieving an average reduction of 19.2%.
Author Xue, Jingling
He, Dongjie
Gui, Yujiang
Author_xml – sequence: 1
  givenname: Yujiang
  surname: Gui
  fullname: Gui, Yujiang
  email: yujiang.gui@unsw.edu.au
  organization: University of New South Wales,Sydney,Australia
– sequence: 2
  givenname: Dongjie
  surname: He
  fullname: He, Dongjie
  email: dongjieh@cse.unsw.edu.au
  organization: University of New South Wales,Sydney,Australia
– sequence: 3
  givenname: Jingling
  surname: Xue
  fullname: Xue, Jingling
  email: jingling@cse.unsw.edu.au
  organization: University of New South Wales,Sydney,Australia
BookMark eNotjsFKAzEYhKMoaGufQA95ga1__myyibdat1qoCLYKnkqym5RI3K1Nq-zbu6LMYZgPZpgBOWnaxhFyyWDMGOjrybIUElGPEZCPAQCLIzLShVZcAEetZX5MzlHmPGOiwDMySOkdQPShOCdvj263cdmz20bT3dDS-1AF1-zpfHa3zG5NcjVdmdCDSWNil0KitqPTtkltDLXZh2ZDy89D-DLxt_Vq4sHRWWy_0wU59SYmN_r3IXmZlavpQ7Z4up9PJ4vM9Of2GQdV1Vzk3kotpGZeVpjnCjnnoqqtRRDeQG4LC1ZJaxlaZaWveynhveZDcvW3G5xz6-0ufJhdt2aAWqEW_Ae3FFRj
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ASE56229.2023.00027
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350329964
EISSN 2643-1572
EndPage 331
ExternalDocumentID 10298295
Genre orig-research
GrantInformation_xml – fundername: ARC
  grantid: DP210102409
  funderid: 10.13039/100000163
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
6J9
AAJGR
AAWTH
ABLEC
ACREN
ADYOE
ADZIZ
AFYQB
ALMA_UNASSIGNED_HOLDINGS
AMTXH
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-a329t-308cd354fb695691f6c244823335cdbb205fa04b7b0b86bb12b8b6fdfdf85ff93
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001103357200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:32:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a329t-308cd354fb695691f6c244823335cdbb205fa04b7b0b86bb12b8b6fdfdf85ff93
OpenAccessLink http://hdl.handle.net/1959.4/105888
PageCount 13
ParticipantIDs ieee_primary_10298295
PublicationCentury 2000
PublicationDate 2023-Sept.-11
PublicationDateYYYYMMDD 2023-09-11
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-11
  day: 11
PublicationDecade 2020
PublicationTitle IEEE/ACM International Conference on Automated Software Engineering : [proceedings]
PublicationTitleAbbrev ASE
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0051577
ssib057256115
Score 2.258464
Snippet The IFDS-based taint analysis employs two mutually iterative passes: a forward pass that identifies taints and a backward pass that detects aliases. This...
SourceID ieee
SourceType Publisher
StartPage 319
SubjectTerms Computational efficiency
IFDS
Iterative methods
Merging
Operating systems
Performance gain
precision
Prototypes
scalability
Sensitivity
Taint analysis
Title Merge-Replay: Efficient IFDS-Based Taint Analysis by Consolidating Equivalent Value Flows
URI https://ieeexplore.ieee.org/document/10298295
WOSCitedRecordID wos001103357200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxGA1aPHiqS8WdHLxGs0wmiTeXFj1YCq1STyXbyMDQ0baj9N-bTBfx4EFyCYGEkC_hZXvvAXDBlZPOCoaExRYlXCVIC8aQt0TiVNMk46Y2mxDdrhwOVW9JVq-5MN77-vOZv4zZ-i3flbaKV2VhhVMlqeKbYFOIdEHWWk0eLgJ4E7Le-wacFmIpM0SwurrptwPU08hNoVHUFNPfhio1nnSa_-zJDmj9MPNgb405u2DDj_dAc2XNAJcrdR-8PkVWJQrb60LPr2G7FooITcLHzn0f3QbocnCg81CwUiWBZg6je2dZ5JHxMH6D7Y8qD_Mw1nrRReVhpyi_pi3w3GkP7h7Q0kUBaUbVDDEsrWM8yUwazkKKZKkNkC4pY4xbZwzFPNM4McJgI1NjCDXSpJkLSfIsU-wANMbl2B8CqJyzifISU4sT64nUHhMviNbGZZ6QI9CKQzV6XwhljFajdPxH-QnYjtGov2zJU9CYTSp_Brbs5yyfTs7r8H4DWKelig
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxGA1uoKe6VNzNwWs0y2SSeHPpoKil0Cp6KtlGBkqrtaP035uMU8WDB8klBBJCvoSX7b0HwBFXTjorGBIWW5RwlSAtGEPeEolTTZOcm8psQrTb8vFRdWqyesWF8d5Xn8_8ccxWb_luZMt4VRZWOFWSKj4PFqN1Vk3Xmk0fLgJ8E_K9-w1ILUQtNESwOjnrtgLY08hOoVHWFNPflioVomSNf_ZlFTR_uHmw8406a2DOD9dBY2bOAOu1ugGe7iKvEoUN9kBPT2GrkooITcLr7LKLzgN4OdjTRSiY6ZJAM4XRv3M0KCLnYfgMW69lEWZirPWgB6WH2WD08dYE91mrd3GFah8FpBlVE8SwtI7xJDdpOA0pkqc2gLqkjDFunTEU81zjxAiDjUyNIdRIk-YuJMnzXLFNsDAcDf0WgMo5mygvMbU4sZ5I7THxgmhtXO4J2QbNOFT9ly-pjP5slHb-KD8Ey1e9u9v-7XX7ZhesxMjEzxiE7IGFybj0-2DJvk-Kt_FBFepPJtWozQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FACM+International+Conference+on+Automated+Software+Engineering+%3A+%5Bproceedings%5D&rft.atitle=Merge-Replay%3A+Efficient+IFDS-Based+Taint+Analysis+by+Consolidating+Equivalent+Value+Flows&rft.au=Gui%2C+Yujiang&rft.au=He%2C+Dongjie&rft.au=Xue%2C+Jingling&rft.date=2023-09-11&rft.pub=IEEE&rft.eissn=2643-1572&rft.spage=319&rft.epage=331&rft_id=info:doi/10.1109%2FASE56229.2023.00027&rft.externalDocID=10298295