Variational calculation of the free core nutation mode

Estimates of the period of the free core nutation (FCN) mode from observations of both Earth tides and nutations consistently show a difference of about 25–30 solar days from the period predicted by theoretical models. Reconciliation of this discrepancy has been the focus of some recent research in...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Physics of the earth and planetary interiors Ročník 94; číslo 3; s. 159 - 182
Hlavní autori: Jiang, Xianhua, Smylie, D.E.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.04.1996
ISSN:0031-9201, 1872-7395
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Estimates of the period of the free core nutation (FCN) mode from observations of both Earth tides and nutations consistently show a difference of about 25–30 solar days from the period predicted by theoretical models. Reconciliation of this discrepancy has been the focus of some recent research in both analyses of observations and theoretical modelling. In this paper, we present numerical calculations of eigenperiod of the FCN mode based upon a variational principle of the liquid outer core of the Earth. This variational principle is numerically implemented by a finite element approach. This numerical implementation of the variational principle then leads to a nonlinear eigenvalue-eigenvector problem. Solutions to this eigenvalue-eigenvector system will deliver eigenperiods of free core nutation modes and eigenperiods of associated wobble modes. The eigenperiod of the FCN mode obtained in our numerical calculations is approximately 450 solar day which is 10 days shorter than the period predicted by previous theoretical models. One of the possible reasons for this difference may lie in different approaches to the dynamics of the liquid outer core.
ISSN:0031-9201
1872-7395
DOI:10.1016/0031-9201(95)03104-9