Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems

Despite significant recent advancements, global hydrological models and their input databases still show limited capabilities in supporting many spatially detailed research questions and integrated assessments, such as required in freshwater ecology or applied water resources management. In order to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Hydrological processes Ročník 27; číslo 15; s. 2171 - 2186
Hlavní autoři: Lehner, Bernhard, Grill, Günther
Médium: Journal Article
Jazyk:angličtina
Vydáno: Blackwell Publishing Ltd 15.07.2013
Témata:
ISSN:0885-6087, 1099-1085
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Despite significant recent advancements, global hydrological models and their input databases still show limited capabilities in supporting many spatially detailed research questions and integrated assessments, such as required in freshwater ecology or applied water resources management. In order to address these challenges, the scientific community needs to create improved large‐scale datasets and more flexible data structures that enable the integration of information across and within spatial scales; develop new and advanced models that support the assessment of longitudinal and lateral hydrological connectivity; and provide an accessible modeling environment for researchers, decision makers, and practitioners. As a contribution, we here present a new modeling framework that integrates hydrographic baseline data at a global scale (enhanced HydroSHEDS layers and coupled datasets) with new modeling tools, specifically a river network routing model (HydroROUT) that is currently under development. The resulting ‘hydro‐spatial fabric’ is designed to provide an avenue for advanced hydro‐ecological applications at large scales in a consistent and highly versatile way. Preliminary results from case studies to assess human impacts on water quality and the effects of dams on river fragmentation and downstream flow regulation illustrate the potential of this combined data‐and‐modeling framework to conduct novel research in the fields of aquatic ecology, biogeochemistry, geo‐statistical modeling, or pollution and health risk assessments. The global scale outcomes are at a previously unachieved spatial resolution of 500 m and can thus support local planning and decision making in many of the world's large river basins. Copyright © 2013 John Wiley & Sons, Ltd.
AbstractList Despite significant recent advancements, global hydrological models and their input databases still show limited capabilities in supporting many spatially detailed research questions and integrated assessments, such as required in freshwater ecology or applied water resources management. In order to address these challenges, the scientific community needs to create improved large‐scale datasets and more flexible data structures that enable the integration of information across and within spatial scales; develop new and advanced models that support the assessment of longitudinal and lateral hydrological connectivity; and provide an accessible modeling environment for researchers, decision makers, and practitioners. As a contribution, we here present a new modeling framework that integrates hydrographic baseline data at a global scale (enhanced HydroSHEDS layers and coupled datasets) with new modeling tools, specifically a river network routing model (HydroROUT) that is currently under development. The resulting ‘hydro‐spatial fabric’ is designed to provide an avenue for advanced hydro‐ecological applications at large scales in a consistent and highly versatile way. Preliminary results from case studies to assess human impacts on water quality and the effects of dams on river fragmentation and downstream flow regulation illustrate the potential of this combined data‐and‐modeling framework to conduct novel research in the fields of aquatic ecology, biogeochemistry, geo‐statistical modeling, or pollution and health risk assessments. The global scale outcomes are at a previously unachieved spatial resolution of 500 m and can thus support local planning and decision making in many of the world's large river basins. Copyright © 2013 John Wiley & Sons, Ltd.
Author Lehner, Bernhard
Grill, Günther
Author_xml – sequence: 1
  givenname: Bernhard
  surname: Lehner
  fullname: Lehner, Bernhard
  email: Correspondence to: Bernhard Lehner, Department of Geography, McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 0B9, Canada., bernhard.lehner@mcgill.ca
  organization: Department of Geography, McGill University, 805 Sherbrooke Street West, QC, H3A 0B9, Montreal, Canada
– sequence: 2
  givenname: Günther
  surname: Grill
  fullname: Grill, Günther
  organization: Department of Geography, McGill University, 805 Sherbrooke Street West, QC, H3A 0B9, Montreal, Canada
BookMark eNp1kEtLxDAURoMoOD7An5Cdbjre9F13KjoKoiI-cBXuJLfTaG1KEh377x1xEBRd3c0534WzwVY72xFjOwLGAiDeb4Z-XBUprLCRgKqKBJTZKhtBWWZRDmWxzja8fwKAFEoYsfmktVNsuTNv5HgzaGdnDvtm4Nhp3lGYW_fMnX0Nppsd8Cl6ak1HXGPAJTLn2PfOomrI82C5D6964KEhvnBbvet5i25Gyxd-8IFe_BZbq7H1tL28m-zu9OT2-Cy6uJqcHx9eRJjEOUSIIlZZleWCRJXqaZGpOs40lBQrrAGTOs1FQTHpPI_zSiVVompKp3WcaiJUySbb-9pVznrvqJa9My_oBilAfgaTi2DyM9gCHf9ClQkYjO2CQ9P-JURfwty0NPw7LM8er3_yZpHg_ZtH9yzzIiky-XA5kfc3IjkSpzcyTT4AtxGQnQ
CitedBy_id crossref_primary_10_1038_s41467_020_15064_8
crossref_primary_10_1007_s41748_024_00464_3
crossref_primary_10_14321_aehm_024_02_10
crossref_primary_10_1002_ieam_1793
crossref_primary_10_1016_j_watres_2023_120567
crossref_primary_10_1080_07900627_2019_1572497
crossref_primary_10_5194_essd_10_765_2018
crossref_primary_10_1016_j_jhydrol_2024_130960
crossref_primary_10_1016_j_ecoser_2024_101670
crossref_primary_10_1016_j_envsoft_2025_106558
crossref_primary_10_1002_vzj2_20305
crossref_primary_10_1038_s41598_024_75166_x
crossref_primary_10_1038_s43247_021_00331_3
crossref_primary_10_1029_2019GL082027
crossref_primary_10_5194_hess_26_3785_2022
crossref_primary_10_5194_cp_21_753_2025
crossref_primary_10_1007_s10113_024_02331_3
crossref_primary_10_1038_s41597_024_04023_3
crossref_primary_10_3389_fenvs_2020_00026
crossref_primary_10_1029_2020JG005799
crossref_primary_10_1088_1748_9326_10_1_015001
crossref_primary_10_1016_j_earscirev_2024_104791
crossref_primary_10_5194_essd_16_1151_2024
crossref_primary_10_26599_OCEAN_2025_9470004
crossref_primary_10_1109_JSTARS_2024_3435363
crossref_primary_10_1016_j_envsoft_2019_104501
crossref_primary_10_1016_j_scitotenv_2018_12_155
crossref_primary_10_1029_2022GL098183
crossref_primary_10_1111_1365_2656_13795
crossref_primary_10_1002_joc_8748
crossref_primary_10_1007_s10113_020_01743_1
crossref_primary_10_1016_j_gloenvcha_2018_02_011
crossref_primary_10_1038_s41467_022_28077_2
crossref_primary_10_1029_2019EF001274
crossref_primary_10_1061_JHYEFF_HEENG_5833
crossref_primary_10_3389_fenvs_2022_788248
crossref_primary_10_3389_fevo_2020_599881
crossref_primary_10_1111_gcb_15961
crossref_primary_10_1038_s41598_021_89564_y
crossref_primary_10_1002_ail2_88
crossref_primary_10_1016_j_chemgeo_2024_122106
crossref_primary_10_5194_hess_27_3911_2023
crossref_primary_10_1016_j_jhydrol_2023_129431
crossref_primary_10_1111_cobi_13466
crossref_primary_10_3390_fishes8100481
crossref_primary_10_1016_j_jenvman_2024_122809
crossref_primary_10_1002_joc_70078
crossref_primary_10_1029_2023GL107956
crossref_primary_10_1088_1748_9326_abb2c7
crossref_primary_10_1111_ddi_13714
crossref_primary_10_1080_02626667_2018_1473871
crossref_primary_10_1016_j_jhydrol_2025_133297
crossref_primary_10_1007_s10528_025_11156_6
crossref_primary_10_1111_csp2_13193
crossref_primary_10_1590_1676_0611_bn_2024_1732
crossref_primary_10_1371_journal_pclm_0000239
crossref_primary_10_1088_1748_9326_aad8e9
crossref_primary_10_1002_aqc_70200
crossref_primary_10_1016_j_ecoinf_2022_101890
crossref_primary_10_1038_s44221_023_00030_7
crossref_primary_10_1016_j_scitotenv_2019_134103
crossref_primary_10_11922_11_6035_noda_2022_0004_zh
crossref_primary_10_1016_j_rser_2025_115723
crossref_primary_10_1016_j_geomorph_2021_107669
crossref_primary_10_1016_j_jag_2025_104826
crossref_primary_10_1111_nph_17675
crossref_primary_10_1016_j_indic_2025_100682
crossref_primary_10_5194_nhess_24_2577_2024
crossref_primary_10_1088_1748_9326_acdca7
crossref_primary_10_5194_hess_29_3277_2025
crossref_primary_10_3390_w15234111
crossref_primary_10_7717_peerj_16533
crossref_primary_10_1007_s12665_024_11455_y
crossref_primary_10_1139_er_2022_0126
crossref_primary_10_1016_j_enggeo_2025_108229
crossref_primary_10_1029_2024JF007802
crossref_primary_10_1016_j_biocon_2019_108323
crossref_primary_10_1016_j_scitotenv_2018_11_348
crossref_primary_10_1038_s41586_024_08375_z
crossref_primary_10_1111_fwb_13500
crossref_primary_10_35634_2412_9518_2025_35_2_220_232
crossref_primary_10_1002_hyp_15280
crossref_primary_10_1371_journal_pone_0191468
crossref_primary_10_1126_science_adf5848
crossref_primary_10_1016_j_envsoft_2024_106232
crossref_primary_10_1029_2024EF005652
crossref_primary_10_3389_feart_2023_1218823
crossref_primary_10_1038_s41597_020_0517_4
crossref_primary_10_1002_ldr_5319
crossref_primary_10_5194_hess_26_5555_2022
crossref_primary_10_1016_j_envpol_2023_123003
crossref_primary_10_1038_s41467_023_44679_w
crossref_primary_10_5194_essd_13_2701_2021
crossref_primary_10_1016_j_jhydrol_2025_134164
crossref_primary_10_1016_j_watres_2025_124048
crossref_primary_10_1038_s41893_020_00665_4
crossref_primary_10_1016_j_scitotenv_2023_167370
crossref_primary_10_1111_ddi_12891
crossref_primary_10_1016_j_geomorph_2025_109708
crossref_primary_10_1016_j_scitotenv_2017_01_200
crossref_primary_10_1016_j_rse_2023_113657
crossref_primary_10_1177_0308518X15594901
crossref_primary_10_3233_SJI_220041
crossref_primary_10_1088_1748_9326_ad4e4b
crossref_primary_10_1088_1755_1315_535_1_012007
crossref_primary_10_1016_j_jag_2024_103694
crossref_primary_10_5194_hess_26_1907_2022
crossref_primary_10_3389_fevo_2023_1165968
crossref_primary_10_3390_rs17132289
crossref_primary_10_1016_j_quageo_2022_101405
crossref_primary_10_5194_hess_26_3315_2022
crossref_primary_10_1029_2019EF001449
crossref_primary_10_1029_2023EF003510
crossref_primary_10_1186_s40623_025_02239_0
crossref_primary_10_1016_j_jhydrol_2022_128060
crossref_primary_10_1126_science_abo2812
crossref_primary_10_1007_s11629_020_6304_z
crossref_primary_10_1029_2023WR036900
crossref_primary_10_1002_lob_10406
crossref_primary_10_1186_s40537_025_01208_4
crossref_primary_10_1016_j_scitotenv_2023_167367
crossref_primary_10_1029_2021WR030054
crossref_primary_10_1016_j_earscirev_2021_103682
crossref_primary_10_1080_23766808_2021_1967661
crossref_primary_10_1038_s43247_025_02653_y
crossref_primary_10_1061_JWRMD5_WRENG_6778
crossref_primary_10_1111_1365_2664_12842
crossref_primary_10_1016_j_scitotenv_2025_179917
crossref_primary_10_3390_w16131902
crossref_primary_10_1016_j_ecolind_2025_113838
crossref_primary_10_1016_j_scitotenv_2021_149105
crossref_primary_10_1002_ieam_4631
crossref_primary_10_1016_j_envsoft_2025_106562
crossref_primary_10_3390_w17152256
crossref_primary_10_5194_essd_15_3483_2023
crossref_primary_10_1002_aqc_4163
crossref_primary_10_1038_s44221_024_00291_w
crossref_primary_10_1002_aqc_3079
crossref_primary_10_1016_j_envpol_2017_07_041
crossref_primary_10_1016_j_iswcr_2025_09_004
crossref_primary_10_1016_j_ecoser_2025_101704
crossref_primary_10_1016_j_rse_2022_113378
crossref_primary_10_1111_fwb_13783
crossref_primary_10_1088_1748_9326_adea89
crossref_primary_10_1111_ddi_13530
crossref_primary_10_1002_pan3_10755
crossref_primary_10_1111_ddi_13776
crossref_primary_10_1002_wat2_1424
crossref_primary_10_1029_2024JG008141
crossref_primary_10_1080_01650521_2022_2085071
crossref_primary_10_1111_gcb_70506
crossref_primary_10_1029_2024WR038654
crossref_primary_10_7717_peerj_19432
crossref_primary_10_7717_peerj_19673
crossref_primary_10_1016_j_biocon_2022_109866
crossref_primary_10_1016_j_scitotenv_2024_170195
crossref_primary_10_1016_j_nbsj_2023_100104
crossref_primary_10_1016_j_ijpara_2025_08_001
crossref_primary_10_1029_2023WR036965
crossref_primary_10_5194_hess_23_3945_2019
crossref_primary_10_3390_atmos12091155
crossref_primary_10_1029_2023WR035882
crossref_primary_10_1016_j_marpolbul_2023_115382
crossref_primary_10_4000_archaeonautica_1860
crossref_primary_10_1007_s12145_023_01133_1
crossref_primary_10_1073_pnas_2407916122
crossref_primary_10_1016_j_biocon_2021_109335
crossref_primary_10_1016_j_jag_2025_104688
crossref_primary_10_1029_2024MS004737
crossref_primary_10_1016_j_ejrh_2025_102375
crossref_primary_10_1016_j_jdeveco_2024_103289
crossref_primary_10_5194_essd_14_4525_2022
crossref_primary_10_1016_j_agsy_2022_103586
crossref_primary_10_1002_aqc_3695
crossref_primary_10_1016_j_scitotenv_2023_163376
crossref_primary_10_1111_fwb_70100
crossref_primary_10_5194_hess_27_3505_2023
crossref_primary_10_1038_ncomms15347
crossref_primary_10_1088_1748_9326_aa7250
crossref_primary_10_1016_j_ecolind_2025_113648
crossref_primary_10_1111_ddi_13798
crossref_primary_10_1016_j_watres_2019_114884
crossref_primary_10_1016_j_jenvman_2023_118667
crossref_primary_10_1016_j_ecolind_2022_108697
crossref_primary_10_1088_1748_9326_acec60
crossref_primary_10_1016_j_jhydrol_2024_131874
crossref_primary_10_1016_j_jhydrol_2024_130787
crossref_primary_10_1016_j_envsoft_2021_105168
crossref_primary_10_3390_rs8050386
crossref_primary_10_1038_s42003_025_07891_6
crossref_primary_10_1016_j_scitotenv_2022_157203
crossref_primary_10_5194_essd_14_559_2022
crossref_primary_10_3390_rs14051259
crossref_primary_10_1016_j_biocon_2024_110843
crossref_primary_10_1002_joc_6181
crossref_primary_10_5194_essd_17_461_2025
crossref_primary_10_1016_j_quascirev_2025_109310
crossref_primary_10_1016_j_biocon_2021_109359
crossref_primary_10_1111_cla_12542
crossref_primary_10_1029_2020WR028658
crossref_primary_10_5194_essd_15_4389_2023
crossref_primary_10_1016_j_ejrh_2025_102595
crossref_primary_10_1016_j_jglr_2024_102325
crossref_primary_10_1016_j_scitotenv_2019_04_054
crossref_primary_10_1038_s41598_024_58401_3
crossref_primary_10_1007_s10113_017_1129_1
crossref_primary_10_1016_j_scitotenv_2025_180038
crossref_primary_10_1016_j_watbs_2025_100380
crossref_primary_10_1038_s41586_021_03565_5
crossref_primary_10_3389_feart_2020_559175
crossref_primary_10_1088_1748_9326_adfd75
crossref_primary_10_1111_1752_1688_70029
crossref_primary_10_1038_s41597_023_02875_9
crossref_primary_10_1007_s11069_025_07518_3
crossref_primary_10_1016_j_jag_2024_104132
crossref_primary_10_1016_j_jhydrol_2023_129097
crossref_primary_10_1051_kmae_2025002
crossref_primary_10_1016_j_scitotenv_2021_146688
crossref_primary_10_1111_geb_13519
crossref_primary_10_1080_07900627_2024_2449227
crossref_primary_10_5194_hess_29_1395_2025
crossref_primary_10_1016_j_dib_2022_107821
crossref_primary_10_1029_2024WR037519
crossref_primary_10_1111_jbi_13941
crossref_primary_10_1007_s00376_021_1085_z
crossref_primary_10_1007_s11160_025_09998_9
crossref_primary_10_1016_j_mex_2025_103153
crossref_primary_10_1029_2020GL088543
crossref_primary_10_1038_s41597_023_02285_x
crossref_primary_10_1016_j_jhazmat_2024_134225
crossref_primary_10_3389_fenvs_2021_671715
crossref_primary_10_1016_j_resconrec_2024_107892
crossref_primary_10_2744_CCB_1505_1
crossref_primary_10_1016_j_scitotenv_2019_05_065
crossref_primary_10_1016_j_envres_2023_115573
crossref_primary_10_1175_JHM_D_16_0050_1
crossref_primary_10_1016_j_quascirev_2025_109373
crossref_primary_10_1038_s41558_018_0386_4
crossref_primary_10_1007_s12145_023_01177_3
crossref_primary_10_1038_s41586_019_1111_9
crossref_primary_10_1073_pnas_2418189122
crossref_primary_10_1029_2020WR027147
crossref_primary_10_1007_s11069_024_07022_0
crossref_primary_10_1007_s12517_020_05548_8
crossref_primary_10_1038_s41467_025_57054_8
crossref_primary_10_1016_j_jhydrol_2018_02_063
crossref_primary_10_1007_s11270_022_05968_0
crossref_primary_10_3390_w17162422
crossref_primary_10_1177_09596836241275010
crossref_primary_10_1111_csp2_70100
crossref_primary_10_1016_j_scitotenv_2023_165592
crossref_primary_10_5194_nhess_21_2921_2021
crossref_primary_10_5194_esurf_10_457_2022
crossref_primary_10_1007_s11069_024_06632_y
crossref_primary_10_1016_j_jeem_2024_103047
crossref_primary_10_1038_s41597_023_02085_3
crossref_primary_10_1371_journal_pone_0162684
crossref_primary_10_1016_j_rse_2025_114859
crossref_primary_10_3390_su15129198
crossref_primary_10_1371_journal_pwat_0000101
crossref_primary_10_1016_j_sajb_2025_08_013
crossref_primary_10_1038_s41598_021_87633_w
crossref_primary_10_1016_j_envint_2023_107868
crossref_primary_10_1029_2024WR038633
crossref_primary_10_1109_JSTARS_2025_3584770
crossref_primary_10_1016_j_envsoft_2021_105117
crossref_primary_10_1016_j_ecss_2025_109335
crossref_primary_10_1016_j_biocon_2025_111179
crossref_primary_10_5194_hess_25_5153_2021
crossref_primary_10_1029_2019WR025287
crossref_primary_10_3390_rs16132489
crossref_primary_10_1016_j_earscirev_2025_105042
crossref_primary_10_3390_w14050721
crossref_primary_10_1080_02626667_2020_1833013
crossref_primary_10_1016_j_earscirev_2025_105048
crossref_primary_10_1371_journal_pone_0209470
crossref_primary_10_1111_jfb_70108
crossref_primary_10_1016_j_rse_2018_12_007
crossref_primary_10_1111_fme_12572
crossref_primary_10_1016_j_envres_2025_122688
crossref_primary_10_1016_j_envsoft_2022_105406
crossref_primary_10_1038_s41893_020_0492_y
crossref_primary_10_2166_wqrj_2017_019
crossref_primary_10_5194_essd_14_4017_2022
crossref_primary_10_1016_j_aeolia_2019_100561
crossref_primary_10_3389_frwa_2024_1394563
crossref_primary_10_1038_s41893_020_0559_9
crossref_primary_10_1007_s12665_025_12352_8
crossref_primary_10_1016_j_jhydrol_2024_131440
crossref_primary_10_1038_s41893_024_01375_x
crossref_primary_10_1038_s41597_019_0243_y
crossref_primary_10_5194_piahs_381_87_2019
crossref_primary_10_1007_s00382_020_05123_7
crossref_primary_10_1073_pnas_2414416122
crossref_primary_10_3389_ffgc_2021_692338
crossref_primary_10_1016_j_jhydrol_2022_128880
crossref_primary_10_1029_2021WR031753
crossref_primary_10_1029_2024WR039347
crossref_primary_10_1016_j_sedgeo_2016_01_022
crossref_primary_10_1038_s41558_021_01074_x
crossref_primary_10_1002_wat2_1705
crossref_primary_10_1016_j_gecco_2016_05_007
crossref_primary_10_1088_1748_9326_abcf77
crossref_primary_10_1016_j_biocon_2023_110186
crossref_primary_10_1016_j_jhydrol_2020_125814
crossref_primary_10_1016_j_palaeo_2025_112810
crossref_primary_10_1016_j_wace_2024_100679
crossref_primary_10_1073_pnas_1912776117
crossref_primary_10_1371_journal_pone_0311412
crossref_primary_10_1111_jbi_15088
crossref_primary_10_1029_2019JD030248
crossref_primary_10_1146_annurev_fluid_030121_113138
crossref_primary_10_1088_1748_9326_ad52b0
crossref_primary_10_35634_2412_9518_2025_35_2_233_240
crossref_primary_10_1016_j_jenvman_2024_122335
crossref_primary_10_1002_ecs2_4616
crossref_primary_10_1111_ddi_13269
crossref_primary_10_1029_2021GB007161
crossref_primary_10_1002_ece3_71551
crossref_primary_10_1016_j_ecolind_2023_109996
crossref_primary_10_3390_biology14070796
crossref_primary_10_1029_2024WR039355
crossref_primary_10_1016_j_ejrh_2024_102150
crossref_primary_10_1007_s11069_024_06487_3
crossref_primary_10_1038_s41597_024_03078_6
crossref_primary_10_1515_geo_2022_0683
crossref_primary_10_1016_j_jas_2022_105655
crossref_primary_10_1029_2023WR036580
crossref_primary_10_1088_2976_601X_adacec
crossref_primary_10_1029_2020JD033965
crossref_primary_10_1038_s41597_022_01649_z
crossref_primary_10_3390_plants11202742
crossref_primary_10_1080_10572414_2021_1943406
crossref_primary_10_1371_journal_pone_0186653
crossref_primary_10_1016_j_isprsjprs_2022_05_007
crossref_primary_10_1007_s10661_023_11014_1
crossref_primary_10_5194_hess_29_3145_2025
crossref_primary_10_1080_13658816_2015_1072629
crossref_primary_10_1080_09397140_2021_1965071
crossref_primary_10_5194_bg_22_3279_2025
crossref_primary_10_1080_20964471_2024_2358615
crossref_primary_10_1038_s41467_024_49699_8
crossref_primary_10_1007_s10021_018_0255_z
crossref_primary_10_1016_j_ijdrr_2025_105442
crossref_primary_10_1029_2022WR033340
crossref_primary_10_1016_j_ijhydene_2018_12_156
crossref_primary_10_1038_s41586_021_03262_3
crossref_primary_10_1002_aqc_3606
crossref_primary_10_1111_jbi_15065
crossref_primary_10_1016_j_gloplacha_2025_104841
crossref_primary_10_1016_j_soildyn_2024_108890
crossref_primary_10_1016_j_palaeo_2017_06_035
crossref_primary_10_1002_aqc_3604
crossref_primary_10_1051_kmae_2022003
crossref_primary_10_1111_syen_12528
crossref_primary_10_1016_j_jenvman_2022_116575
crossref_primary_10_5194_essd_15_847_2023
crossref_primary_10_1016_j_ecoinf_2024_102643
crossref_primary_10_1038_s43247_024_01530_4
crossref_primary_10_1038_s43247_024_01554_w
crossref_primary_10_1016_j_polar_2021_100644
crossref_primary_10_1007_s10346_024_02306_9
crossref_primary_10_1080_07011784_2025_2514122
crossref_primary_10_1017_S0959270921000150
crossref_primary_10_1111_fwb_14150
crossref_primary_10_5194_hess_24_3835_2020
crossref_primary_10_1007_s10705_022_10232_2
crossref_primary_10_1016_j_geomorph_2021_108078
crossref_primary_10_1038_s41467_024_49555_9
crossref_primary_10_1371_journal_pone_0204149
crossref_primary_10_1007_s10750_019_04044_9
crossref_primary_10_1002_2016JC012276
crossref_primary_10_1038_s41597_021_00949_0
crossref_primary_10_1088_1748_9326_ad6a70
crossref_primary_10_1088_2753_3751_ad53cb
crossref_primary_10_1111_jfr3_70001
crossref_primary_10_1111_gcb_15139
crossref_primary_10_3390_rs17010078
crossref_primary_10_1016_j_jhydrol_2024_132026
crossref_primary_10_1007_s11356_024_33507_3
crossref_primary_10_1016_j_watres_2018_08_053
crossref_primary_10_1029_2024JF008017
crossref_primary_10_1038_s43017_023_00397_x
crossref_primary_10_1016_j_pecon_2024_10_002
crossref_primary_10_1088_1748_9326_acf602
crossref_primary_10_1111_1752_1688_13231
crossref_primary_10_1016_j_envres_2025_122373
crossref_primary_10_1016_j_scitotenv_2023_164317
crossref_primary_10_1016_j_scitotenv_2017_11_315
crossref_primary_10_3389_feart_2020_582060
crossref_primary_10_1016_j_jenvman_2025_124852
crossref_primary_10_1016_j_biocon_2024_110669
crossref_primary_10_3390_su151310657
crossref_primary_10_1016_j_ecolind_2025_113149
crossref_primary_10_3390_rs15184492
crossref_primary_10_1002_iis2_13167
crossref_primary_10_1016_j_envpol_2024_125153
crossref_primary_10_1016_j_scitotenv_2022_154696
crossref_primary_10_1029_2021WR031721
crossref_primary_10_1371_journal_pntd_0009385
crossref_primary_10_5194_nhess_20_625_2020
crossref_primary_10_1038_s41467_023_42384_2
crossref_primary_10_1007_s11069_022_05737_6
crossref_primary_10_1093_biolinnean_blac097
crossref_primary_10_1111_jfr3_13047
crossref_primary_10_3389_fmars_2024_1282286
crossref_primary_10_1007_s10531_024_02790_4
crossref_primary_10_3390_rs14236091
crossref_primary_10_1016_j_ympev_2024_108046
crossref_primary_10_1007_s11269_015_1115_7
crossref_primary_10_1088_3033_4942_adf571
crossref_primary_10_3390_rs16203881
crossref_primary_10_3390_en12071395
crossref_primary_10_3390_w11061146
crossref_primary_10_1371_journal_pone_0279924
crossref_primary_10_1002_wrcr_20552
crossref_primary_10_1111_cag_12893
crossref_primary_10_1016_j_scitotenv_2023_163689
crossref_primary_10_1016_j_gloplacha_2024_104527
crossref_primary_10_1080_00293652_2025_2510920
crossref_primary_10_3390_data9040058
crossref_primary_10_1016_j_envres_2025_121068
crossref_primary_10_1111_icad_12666
crossref_primary_10_1029_2020MS002434
crossref_primary_10_1016_j_gca_2020_09_007
crossref_primary_10_1002_hyp_13791
crossref_primary_10_1038_s41437_018_0074_1
crossref_primary_10_3390_d14100793
crossref_primary_10_1016_j_watres_2015_12_008
crossref_primary_10_1080_07011784_2019_1691943
crossref_primary_10_1038_s41558_025_02308_y
crossref_primary_10_3390_w13141977
crossref_primary_10_7554_eLife_101080
crossref_primary_10_1029_2018WR023218
crossref_primary_10_3390_jmse12030438
crossref_primary_10_1111_1752_1688_13227
crossref_primary_10_1029_2022WR033148
crossref_primary_10_1139_facets_2020_0114
crossref_primary_10_1002_ieam_1801
crossref_primary_10_1038_s41467_025_58792_5
crossref_primary_10_1007_s40823_023_00091_0
crossref_primary_10_1016_j_jhydrol_2024_132491
crossref_primary_10_1029_2021GL093656
crossref_primary_10_1139_cjfas_2018_0284
crossref_primary_10_1016_j_jhydrol_2024_132490
crossref_primary_10_1139_cjz_2024_0173
crossref_primary_10_1038_s41597_025_05659_5
crossref_primary_10_1029_2022WR033153
crossref_primary_10_1029_2024GL113684
crossref_primary_10_1016_j_renene_2025_124290
crossref_primary_10_1016_j_jenvman_2024_123254
crossref_primary_10_3390_rs14184612
crossref_primary_10_1111_jfb_14727
crossref_primary_10_1073_pnas_1617218114
crossref_primary_10_1016_j_ecolind_2014_03_026
crossref_primary_10_1016_j_envint_2023_108371
crossref_primary_10_1016_j_jclepro_2025_146305
crossref_primary_10_1038_s41561_024_01476_4
crossref_primary_10_1029_2023JG007672
crossref_primary_10_1111_1752_1688_12585
crossref_primary_10_1088_1755_1315_704_1_012040
crossref_primary_10_1002_eco_1721
crossref_primary_10_1038_s41597_023_02474_8
crossref_primary_10_1016_j_catena_2023_107773
crossref_primary_10_5194_essd_16_3873_2024
crossref_primary_10_1016_j_cageo_2020_104485
crossref_primary_10_1002_aqc_2933
crossref_primary_10_5194_nhess_21_2829_2021
crossref_primary_10_1088_1748_9326_ada398
crossref_primary_10_1029_2022JF006873
crossref_primary_10_1371_journal_pone_0227437
crossref_primary_10_1111_brv_13142
crossref_primary_10_1080_13241583_2022_2141333
crossref_primary_10_1016_j_oneear_2022_08_012
crossref_primary_10_1080_07900627_2024_2448720
crossref_primary_10_1002_2017WR021765
crossref_primary_10_1016_j_jhydrol_2025_133429
crossref_primary_10_1038_ncomms13603
crossref_primary_10_3390_rs16162875
crossref_primary_10_1002_2016GL071844
crossref_primary_10_24057_2071_9388_2025_3737
crossref_primary_10_1002_rra_3958
crossref_primary_10_1155_2022_6600359
crossref_primary_10_1016_j_jhydrol_2023_129607
crossref_primary_10_1038_s41597_025_05087_5
crossref_primary_10_1080_02626667_2020_1720024
crossref_primary_10_1016_j_jhydrol_2018_08_074
crossref_primary_10_1016_j_watres_2024_122889
crossref_primary_10_1111_1365_2656_70079
crossref_primary_10_5194_esurf_8_87_2020
crossref_primary_10_1016_j_dendro_2022_126017
crossref_primary_10_1111_cobi_14036
crossref_primary_10_1016_j_scitotenv_2024_177004
crossref_primary_10_1080_00087041_2022_2097758
crossref_primary_10_1002_hyp_14846
crossref_primary_10_3390_s23104975
crossref_primary_10_1177_03091333211051939
crossref_primary_10_1016_j_ympev_2020_106755
crossref_primary_10_1029_2020GL089258
crossref_primary_10_1016_j_jenvman_2025_125084
crossref_primary_10_3390_hydrology10040076
crossref_primary_10_1016_j_jhydrol_2020_125878
crossref_primary_10_1016_j_isci_2024_111598
crossref_primary_10_1016_j_chemgeo_2020_119794
crossref_primary_10_5194_esd_16_29_2025
crossref_primary_10_3390_su13052805
crossref_primary_10_1021_acs_est_4c07345
crossref_primary_10_1109_TGRS_2022_3231552
crossref_primary_10_1029_2020EF001778
crossref_primary_10_3390_data10050078
crossref_primary_10_5194_hess_26_469_2022
crossref_primary_10_5194_hess_26_1801_2022
crossref_primary_10_1002_edn3_480
crossref_primary_10_1016_j_ijsrc_2024_03_001
crossref_primary_10_1088_1748_9326_adfcee
crossref_primary_10_5194_hess_27_3293_2023
crossref_primary_10_1080_15481603_2024_2364461
crossref_primary_10_1016_j_watres_2020_116265
crossref_primary_10_1002_aff2_140
crossref_primary_10_1016_j_jhydrol_2025_133477
crossref_primary_10_1088_1748_9326_adcf39
crossref_primary_10_3390_rs12050745
crossref_primary_10_1002_aqc_2971
crossref_primary_10_1016_j_scitotenv_2015_09_100
crossref_primary_10_1038_s41558_022_01556_6
crossref_primary_10_1111_bor_12678
crossref_primary_10_3389_frwa_2025_1603004
crossref_primary_10_1002_esp_5347
crossref_primary_10_1016_j_ecolind_2023_110386
crossref_primary_10_1029_2023GB008092
crossref_primary_10_1016_j_scitotenv_2024_173950
crossref_primary_10_1016_j_epsl_2025_119226
crossref_primary_10_1038_s41893_022_00937_1
crossref_primary_10_5194_hess_22_2839_2018
crossref_primary_10_5194_esurf_12_581_2024
crossref_primary_10_1111_mec_17204
crossref_primary_10_1093_biolinnean_blab153
crossref_primary_10_1016_j_ecoinf_2015_12_005
crossref_primary_10_1016_j_jhazmat_2023_132455
crossref_primary_10_1029_2019WR025957
crossref_primary_10_1002_aqc_2965
crossref_primary_10_1002_aqc_3812
crossref_primary_10_26599_HYD_2023_9380002_V1
crossref_primary_10_1016_j_scitotenv_2022_153510
crossref_primary_10_1016_j_rse_2023_113724
crossref_primary_10_1002_aqc_70094
crossref_primary_10_3390_rs17091651
crossref_primary_10_5194_esurf_13_745_2025
crossref_primary_10_1007_s10750_025_05995_y
crossref_primary_10_1080_02723646_2020_1762960
crossref_primary_10_1080_07011784_2020_1772116
crossref_primary_10_3390_rs14184461
crossref_primary_10_1016_j_catena_2022_106182
crossref_primary_10_1016_j_jhydrol_2025_134103
crossref_primary_10_1016_j_scitotenv_2023_162993
crossref_primary_10_1038_s41598_020_72499_1
crossref_primary_10_1002_qj_4622
crossref_primary_10_1016_j_jhazmat_2024_133839
crossref_primary_10_1016_j_geomorph_2024_109457
crossref_primary_10_1038_s41586_024_07964_2
crossref_primary_10_1038_s41598_023_32511_w
crossref_primary_10_3390_w14182887
crossref_primary_10_1038_s41597_022_01614_w
crossref_primary_10_1016_j_envint_2019_105260
crossref_primary_10_1016_j_envsci_2025_104089
crossref_primary_10_1016_j_pdisas_2020_100076
crossref_primary_10_1088_1748_9326_ad1cb5
crossref_primary_10_1038_s41467_021_22299_6
crossref_primary_10_1080_10572414_2022_2076518
crossref_primary_10_1111_csp2_12975
crossref_primary_10_1016_j_rse_2014_10_015
crossref_primary_10_3390_w16030448
crossref_primary_10_1038_s43247_025_02508_6
crossref_primary_10_1093_aobpla_plad009
crossref_primary_10_3389_frwa_2022_1061991
crossref_primary_10_3390_d14110982
crossref_primary_10_1016_j_renene_2021_04_109
crossref_primary_10_1038_s44221_025_00435_6
crossref_primary_10_1007_s11756_022_01289_z
crossref_primary_10_3390_rs11212556
crossref_primary_10_1177_0309133318776462
crossref_primary_10_1111_gcb_17166
crossref_primary_10_1007_s11069_025_07457_z
crossref_primary_10_1038_s43247_025_02530_8
crossref_primary_10_1111_bor_12471
crossref_primary_10_1007_s00477_025_02980_8
crossref_primary_10_5194_hess_28_1527_2024
crossref_primary_10_1111_1752_1688_12864
crossref_primary_10_1038_s41597_023_02251_7
crossref_primary_10_1029_2024GC011869
crossref_primary_10_1002_gdj3_285
crossref_primary_10_3390_rs14174278
crossref_primary_10_3390_rs17111889
crossref_primary_10_1111_csp2_13290
crossref_primary_10_1016_j_dendro_2023_126115
crossref_primary_10_5194_nhess_24_1415_2024
crossref_primary_10_1111_fwb_13831
crossref_primary_10_3389_fevo_2020_00281
crossref_primary_10_1007_s00027_015_0430_7
crossref_primary_10_1016_j_scitotenv_2024_174289
crossref_primary_10_1111_gcb_14753
crossref_primary_10_3390_atmos16040459
crossref_primary_10_1016_j_rser_2024_114439
crossref_primary_10_3897_aiep_53_112183
crossref_primary_10_1016_j_watres_2025_124372
crossref_primary_10_3390_rs11101164
crossref_primary_10_1111_jbi_14300
crossref_primary_10_1016_j_geosus_2020_08_004
crossref_primary_10_1111_fwb_13600
crossref_primary_10_1080_02626667_2025_2461695
crossref_primary_10_5194_cp_16_1987_2020
crossref_primary_10_1029_2020JG005689
crossref_primary_10_1038_s44221_024_00194_w
crossref_primary_10_1029_2021EF002062
crossref_primary_10_1016_j_scitotenv_2021_149494
crossref_primary_10_1038_s41586_021_03695_w
crossref_primary_10_1016_j_jhydrol_2023_129555
crossref_primary_10_1016_j_scitotenv_2018_10_416
crossref_primary_10_1371_journal_pone_0273984
crossref_primary_10_1016_j_jag_2021_102656
crossref_primary_10_1007_s11356_022_24391_w
crossref_primary_10_1002_aqc_3162
crossref_primary_10_1002_2016WR019991
crossref_primary_10_1016_j_jhydrol_2025_133175
crossref_primary_10_2744_CCB_1398_1
crossref_primary_10_1002_ece3_4659
crossref_primary_10_5194_essd_16_4673_2024
crossref_primary_10_1038_s41598_024_58198_1
crossref_primary_10_1007_s10666_023_09886_1
crossref_primary_10_1111_1749_4877_12600
crossref_primary_10_2166_nh_2018_199
crossref_primary_10_3390_d14020084
crossref_primary_10_1029_2023GL103225
crossref_primary_10_5194_essd_8_651_2016
crossref_primary_10_1016_j_ecolind_2025_113919
crossref_primary_10_2166_nh_2024_111
crossref_primary_10_5194_hess_24_4503_2020
crossref_primary_10_1016_j_watres_2022_119380
crossref_primary_10_1038_s43017_023_00511_z
crossref_primary_10_1016_j_jenvman_2023_118374
crossref_primary_10_1016_j_pce_2023_103449
crossref_primary_10_1111_cobi_13590
crossref_primary_10_1016_j_jhydrol_2024_130832
crossref_primary_10_1016_j_jenvman_2025_126583
crossref_primary_10_1088_1748_9326_ade4dd
crossref_primary_10_5194_nhess_23_2365_2023
crossref_primary_10_1038_s41597_019_0300_6
crossref_primary_10_5194_hess_18_1917_2014
crossref_primary_10_1016_j_rse_2020_111998
crossref_primary_10_1016_j_scitotenv_2021_151992
crossref_primary_10_1029_2018WR023903
crossref_primary_10_1002_ieam_4506
crossref_primary_10_1002_wat2_70025
crossref_primary_10_1111_gcb_15811
crossref_primary_10_1093_inteam_vjaf119
crossref_primary_10_1073_pnas_1920759117
crossref_primary_10_1016_j_cageo_2021_105015
crossref_primary_10_2989_16085914_2021_1976610
crossref_primary_10_3390_w13060816
crossref_primary_10_1016_j_jhydrol_2024_130644
crossref_primary_10_1016_j_envsoft_2024_106108
crossref_primary_10_1016_j_jenvman_2022_115847
crossref_primary_10_1038_s41467_025_57495_1
crossref_primary_10_5194_hess_23_2841_2019
crossref_primary_10_3389_feart_2022_833599
crossref_primary_10_5194_hess_25_5287_2021
crossref_primary_10_1029_2022JG007291
crossref_primary_10_1038_s41597_022_01425_z
crossref_primary_10_1016_j_jhydrol_2025_133191
crossref_primary_10_1016_j_rse_2022_113267
crossref_primary_10_1016_j_scitotenv_2024_177118
crossref_primary_10_1038_s41597_024_03226_y
crossref_primary_10_1007_s12040_022_01956_4
crossref_primary_10_1002_ece3_3353
crossref_primary_10_1016_j_ecolind_2023_111193
crossref_primary_10_1126_sciadv_adx0298
crossref_primary_10_5194_hess_19_63_2015
crossref_primary_10_1016_j_advwatres_2018_12_005
crossref_primary_10_1016_j_scitotenv_2020_138251
crossref_primary_10_1016_j_earscirev_2020_103276
crossref_primary_10_18307_2025_0441
crossref_primary_10_1038_s41597_020_0362_5
crossref_primary_10_1111_fwb_13645
crossref_primary_10_1007_s00267_022_01662_3
crossref_primary_10_1111_fwb_13885
crossref_primary_10_1007_s10530_022_02814_6
crossref_primary_10_1002_hyp_15167
crossref_primary_10_1088_2515_7620_adb941
crossref_primary_10_1007_s10346_024_02387_6
crossref_primary_10_1016_j_ecolind_2025_113725
crossref_primary_10_1073_pnas_1521540113
crossref_primary_10_1111_gcb_13657
crossref_primary_10_1016_j_jhydrol_2023_129118
crossref_primary_10_1111_ddi_12780
crossref_primary_10_1016_j_jhydrol_2023_130343
crossref_primary_10_1016_j_scitotenv_2024_175146
crossref_primary_10_1111_fwb_13405
crossref_primary_10_1029_2021GL094194
crossref_primary_10_5194_hess_26_6247_2022
crossref_primary_10_1016_j_jhydrol_2023_129353
crossref_primary_10_1038_s41597_025_04975_0
crossref_primary_10_5194_essd_17_1461_2025
crossref_primary_10_1007_s00382_023_06961_x
crossref_primary_10_3390_rs16173272
crossref_primary_10_1029_2020TC006536
crossref_primary_10_1016_j_rse_2022_113243
crossref_primary_10_1016_j_scitotenv_2023_166397
crossref_primary_10_1007_s13280_020_01360_6
crossref_primary_10_1007_s41748_025_00756_2
crossref_primary_10_1038_s43247_025_02467_y
crossref_primary_10_1038_s41893_024_01367_x
crossref_primary_10_1073_pnas_2307072120
crossref_primary_10_1029_2020WR029266
crossref_primary_10_1111_jfb_15011
crossref_primary_10_1038_s41597_025_04502_1
crossref_primary_10_1016_j_marpolbul_2025_118486
crossref_primary_10_1175_JHM_D_21_0053_1
crossref_primary_10_1016_j_biocon_2025_111222
crossref_primary_10_1007_s11069_025_07596_3
crossref_primary_10_1007_s10750_024_05648_6
crossref_primary_10_1016_j_gloplacha_2019_03_004
crossref_primary_10_7554_eLife_101080_3
crossref_primary_10_1080_01431161_2022_2111531
crossref_primary_10_5194_nhess_20_3245_2020
crossref_primary_10_1016_j_ecoser_2016_09_007
crossref_primary_10_1038_s41467_022_30729_2
crossref_primary_10_3390_w13121659
crossref_primary_10_1038_s41598_021_02891_y
crossref_primary_10_1038_s41612_025_01083_z
crossref_primary_10_1016_j_scitotenv_2022_160941
crossref_primary_10_1093_zoolinnean_zlae076
crossref_primary_10_5194_hess_26_5163_2022
crossref_primary_10_1029_2022WR032743
crossref_primary_10_1111_fme_12285
crossref_primary_10_5209_aguc_69337
crossref_primary_10_1111_fwb_13670
crossref_primary_10_1038_s43017_022_00268_x
crossref_primary_10_1109_JSTARS_2025_3584821
crossref_primary_10_1038_s43247_024_01454_z
crossref_primary_10_1007_s11356_023_27639_1
crossref_primary_10_3390_w10111578
crossref_primary_10_1111_zsc_12736
crossref_primary_10_1111_fwb_13671
crossref_primary_10_1016_j_scitotenv_2024_177713
crossref_primary_10_1134_S0742046324700738
crossref_primary_10_1007_s40808_025_02526_5
crossref_primary_10_1016_j_quascirev_2024_109150
crossref_primary_10_1029_2022GL100092
crossref_primary_10_1073_pnas_2214291119
crossref_primary_10_1016_j_envsoft_2021_105049
crossref_primary_10_1002_esp_5702
crossref_primary_10_1016_j_quascirev_2024_109159
crossref_primary_10_1002_ece3_71279
crossref_primary_10_1002_hyp_15124
crossref_primary_10_5194_nhess_23_2769_2023
crossref_primary_10_11922_11_6035_csd_2023_0173_zh
crossref_primary_10_2205_2024ES000906
crossref_primary_10_1007_s10933_021_00217_6
crossref_primary_10_1029_2022GL102027
crossref_primary_10_5194_hess_29_4557_2025
crossref_primary_10_1029_2024JH000173
crossref_primary_10_1029_2020WR027692
crossref_primary_10_1038_s41586_024_07145_1
crossref_primary_10_5194_cp_20_1595_2024
crossref_primary_10_1016_j_biocon_2025_111092
crossref_primary_10_1111_btp_70079
crossref_primary_10_5194_hess_28_5069_2024
crossref_primary_10_1016_j_dib_2025_111319
crossref_primary_10_5194_hess_25_6381_2021
crossref_primary_10_1111_jfb_15627
crossref_primary_10_1016_j_ecolind_2023_109907
crossref_primary_10_1134_S0001433825700604
crossref_primary_10_1016_j_biocon_2019_05_038
crossref_primary_10_1029_2024WR038308
crossref_primary_10_1088_1748_9326_ac98d9
crossref_primary_10_1088_1748_9326_ad6919
crossref_primary_10_1016_j_energy_2015_12_107
crossref_primary_10_1111_ddi_13686
crossref_primary_10_1007_s41101_022_00149_w
crossref_primary_10_3390_rs17101659
crossref_primary_10_1007_s41748_025_00660_9
crossref_primary_10_1016_j_jhydrol_2024_130674
crossref_primary_10_1016_j_jhydrol_2024_130678
crossref_primary_10_1016_j_jhydrol_2025_132910
crossref_primary_10_3390_land12122154
crossref_primary_10_1029_2020MS002221
crossref_primary_10_1098_rspb_2023_1066
crossref_primary_10_1061_NHREFO_NHENG_1911
crossref_primary_10_1016_j_biocon_2021_109234
crossref_primary_10_1016_j_worlddev_2019_104848
crossref_primary_10_1029_2021WR030386
crossref_primary_10_1016_j_rsase_2023_101067
crossref_primary_10_5194_hess_27_3221_2023
crossref_primary_10_1029_2021WR030382
crossref_primary_10_1016_j_biocon_2019_05_042
crossref_primary_10_1016_j_jclepro_2024_142546
crossref_primary_10_1080_07038992_2021_1924646
crossref_primary_10_1111_ddi_13211
crossref_primary_10_1371_journal_pone_0247876
crossref_primary_10_1371_journal_pone_0325693
crossref_primary_10_3390_su13084153
crossref_primary_10_1016_j_jclepro_2023_140128
crossref_primary_10_1016_j_wace_2025_100762
crossref_primary_10_3389_fenvs_2021_643367
crossref_primary_10_15184_aqy_2025_10148
crossref_primary_10_1111_jfb_15884
crossref_primary_10_1016_j_aeolia_2017_06_002
crossref_primary_10_1016_j_ecolind_2022_109847
crossref_primary_10_1016_j_jnc_2025_126850
crossref_primary_10_3390_hydrology11080119
crossref_primary_10_1029_2017WR022478
crossref_primary_10_1088_1748_9326_abcb37
crossref_primary_10_1038_ngeo2972
crossref_primary_10_1038_s44304_025_00121_3
crossref_primary_10_1029_2023WR036896
crossref_primary_10_3390_hydrology12080202
crossref_primary_10_1088_1748_9326_ab10ee
crossref_primary_10_3390_w17081200
crossref_primary_10_1144_SP553_2023_218
crossref_primary_10_1111_fwb_13477
crossref_primary_10_5194_hess_20_2047_2016
crossref_primary_10_1111_fwb_70014
crossref_primary_10_5194_essd_13_2001_2021
crossref_primary_10_1145_3757892_3757904
crossref_primary_10_3390_su11041131
crossref_primary_10_1016_j_jhydrol_2019_03_042
crossref_primary_10_3390_land12020340
crossref_primary_10_1016_j_scitotenv_2023_168982
crossref_primary_10_1029_2025EF005966
crossref_primary_10_1016_j_rse_2021_112725
crossref_primary_10_1029_2022WR032312
crossref_primary_10_1016_j_biocon_2020_108903
crossref_primary_10_1007_s10661_015_4912_9
crossref_primary_10_1038_s41598_020_59867_7
crossref_primary_10_1016_j_envres_2025_121212
crossref_primary_10_1016_j_quascirev_2018_06_001
crossref_primary_10_1016_j_ympev_2023_107856
crossref_primary_10_1016_j_rse_2025_114744
crossref_primary_10_1371_journal_pone_0281933
crossref_primary_10_1038_s41597_024_03749_4
crossref_primary_10_1016_j_watres_2023_120622
crossref_primary_10_3390_hydrology8040164
crossref_primary_10_1016_j_rines_2024_100042
crossref_primary_10_1088_1748_9326_ad383d
crossref_primary_10_1029_2023WR034692
crossref_primary_10_1111_fwb_13490
crossref_primary_10_1029_2023WR035781
crossref_primary_10_1029_2022GB007657
crossref_primary_10_5194_tc_18_2487_2024
crossref_primary_10_1002_hyp_70154
crossref_primary_10_1007_s40030_023_00762_5
crossref_primary_10_1029_2023GL105064
crossref_primary_10_1093_pnasnexus_pgaf096
crossref_primary_10_1016_j_watres_2022_119347
crossref_primary_10_1038_s41467_024_51302_z
crossref_primary_10_1016_j_jhydrol_2024_131565
crossref_primary_10_1080_09715010_2023_2292280
crossref_primary_10_5194_essd_15_2927_2023
crossref_primary_10_1007_s10750_019_04136_6
crossref_primary_10_1038_s41597_023_02732_9
crossref_primary_10_4000_archaeonautica_1919
crossref_primary_10_1002_aqc_3596
crossref_primary_10_1016_j_rse_2022_113099
crossref_primary_10_1111_jfb_70219
crossref_primary_10_1016_j_pecon_2018_09_002
crossref_primary_10_1016_j_ecolind_2025_113312
crossref_primary_10_1016_j_biocon_2016_09_005
crossref_primary_10_1371_journal_pone_0318951
crossref_primary_10_1016_j_ympev_2021_107261
crossref_primary_10_1007_s10531_023_02587_x
crossref_primary_10_1016_j_jas_2022_105550
crossref_primary_10_1016_j_apgeog_2024_103342
crossref_primary_10_1038_s41597_021_00819_9
crossref_primary_10_1111_conl_12312
crossref_primary_10_1038_s41597_022_01132_9
crossref_primary_10_1029_2022WR033681
crossref_primary_10_1038_s44221_024_00276_9
crossref_primary_10_1016_j_rsase_2025_101550
crossref_primary_10_1029_2019JD031456
crossref_primary_10_1515_geo_2025_0856
crossref_primary_10_1007_s13280_025_02137_5
crossref_primary_10_1002_2014GL059744
crossref_primary_10_1016_j_rse_2025_114712
crossref_primary_10_3390_land11030371
crossref_primary_10_1002_lno_12706
crossref_primary_10_1038_s41598_019_39365_1
crossref_primary_10_1016_j_scitotenv_2022_153205
crossref_primary_10_3390_rs14236177
crossref_primary_10_3390_su122410271
crossref_primary_10_59717_j_xinn_geo_2025_100132
crossref_primary_10_1016_j_ecolind_2020_106518
crossref_primary_10_1111_gwat_13124
crossref_primary_10_1038_s41467_022_28029_w
crossref_primary_10_1016_j_gr_2025_07_017
crossref_primary_10_1016_j_jcz_2025_07_003
crossref_primary_10_1080_17538947_2025_2513044
crossref_primary_10_1016_j_jhydrol_2024_132112
crossref_primary_10_1007_s00382_024_07548_w
crossref_primary_10_1029_2023WR036460
crossref_primary_10_1007_s10669_024_09967_w
crossref_primary_10_1016_j_rsase_2025_101565
crossref_primary_10_1111_gcb_15285
crossref_primary_10_1016_j_jue_2024_103735
crossref_primary_10_1002_ece3_9300
crossref_primary_10_3390_rs17081377
crossref_primary_10_1073_pnas_2417812122
crossref_primary_10_1016_j_apenergy_2019_02_009
crossref_primary_10_1016_j_quascirev_2016_05_012
crossref_primary_10_1016_j_jhydrol_2025_133734
crossref_primary_10_1016_j_scitotenv_2021_146664
crossref_primary_10_3390_ijgi10060384
crossref_primary_10_1111_1752_1688_13134
crossref_primary_10_1590_1676_0611_bn_2023_1481
crossref_primary_10_1080_15715124_2023_2278678
crossref_primary_10_3390_w10101359
crossref_primary_10_1371_journal_pstr_0000106
crossref_primary_10_1186_s13021_021_00191_6
crossref_primary_10_1016_j_eiar_2025_107929
crossref_primary_10_1016_j_scitotenv_2022_156756
crossref_primary_10_1016_j_rsma_2024_103511
crossref_primary_10_1002_aqc_2638
crossref_primary_10_1016_j_rse_2024_114333
crossref_primary_10_1016_j_scitotenv_2024_173852
crossref_primary_10_1002_2013WR014664
crossref_primary_10_3390_rs13245117
crossref_primary_10_1016_j_rse_2025_114926
crossref_primary_10_3390_rs70708779
crossref_primary_10_1038_s41467_023_41812_7
crossref_primary_10_1016_j_jhydrol_2024_132336
crossref_primary_10_1007_s10750_021_04589_8
crossref_primary_10_1038_s41597_023_02008_2
crossref_primary_10_1016_j_ecolind_2023_110848
crossref_primary_10_5194_bg_20_1423_2023
crossref_primary_10_1038_s41467_022_29616_7
crossref_primary_10_1016_j_rse_2020_112281
crossref_primary_10_1073_pnas_2014016117
crossref_primary_10_1007_s11069_025_07209_z
crossref_primary_10_1029_2021JF006147
crossref_primary_10_1038_s41558_022_01355_z
crossref_primary_10_1111_cobi_13914
crossref_primary_10_3390_d15020260
crossref_primary_10_1016_j_envsoft_2018_05_018
crossref_primary_10_1080_01431161_2024_2412802
crossref_primary_10_1029_2025EF006648
crossref_primary_10_3390_w12123543
crossref_primary_10_55959_MSU0579_9406_4_2024_63_6_32_41
crossref_primary_10_1016_j_gecco_2016_12_005
crossref_primary_10_1016_j_jhydrol_2018_11_037
crossref_primary_10_2166_wp_2020_235
crossref_primary_10_3390_d15060710
crossref_primary_10_3389_feart_2024_1386547
crossref_primary_10_1016_j_jhydrol_2025_133516
crossref_primary_10_3390_rs13245146
crossref_primary_10_1111_1752_1688_13110
crossref_primary_10_1016_j_gloplacha_2025_104903
crossref_primary_10_1016_j_jhydrol_2024_131294
crossref_primary_10_1029_2022WR032395
crossref_primary_10_1029_2023WR035164
crossref_primary_10_3390_w13131825
crossref_primary_10_1038_s41598_022_07080_z
crossref_primary_10_3390_su12166402
crossref_primary_10_1038_s41597_022_01256_y
crossref_primary_10_1080_19475705_2024_2404596
crossref_primary_10_1111_gcb_15251
crossref_primary_10_1111_gcb_15010
crossref_primary_10_1038_s41467_023_39194_x
crossref_primary_10_1038_s43247_023_00968_2
crossref_primary_10_1080_02626667_2023_2269909
crossref_primary_10_5194_essd_16_201_2024
crossref_primary_10_1029_2023EF004279
crossref_primary_10_3389_feart_2025_1569178
crossref_primary_10_1016_j_jhydrol_2018_11_044
crossref_primary_10_1029_2024EA003743
crossref_primary_10_3390_w15193482
crossref_primary_10_1002_ecs2_70235
crossref_primary_10_1016_j_ejrh_2025_102576
crossref_primary_10_1016_j_jhydrol_2025_132895
crossref_primary_10_1029_2018WR024205
crossref_primary_10_3390_su14020927
crossref_primary_10_1016_j_jhydrol_2025_133988
crossref_primary_10_1016_j_dendro_2024_126164
crossref_primary_10_1080_01650424_2025_2468665
crossref_primary_10_1111_oik_09802
crossref_primary_10_3897_neotropical_17_e80062
crossref_primary_10_1016_j_eneco_2021_105571
crossref_primary_10_1016_j_gloplacha_2025_104915
crossref_primary_10_1088_2752_5295_ad34a9
crossref_primary_10_1038_s43247_025_02416_9
crossref_primary_10_1088_1748_9326_ac46ec
crossref_primary_10_1073_pnas_2211974120
crossref_primary_10_3390_w16040536
crossref_primary_10_2166_wp_2021_264
crossref_primary_10_1016_j_resconrec_2023_107088
crossref_primary_10_1038_s41597_025_04915_y
crossref_primary_10_3390_rs16020328
crossref_primary_10_1016_j_envsoft_2023_105688
crossref_primary_10_1016_j_biocon_2024_110761
crossref_primary_10_1016_j_joule_2020_07_018
crossref_primary_10_1109_TGRS_2024_3496731
crossref_primary_10_1126_science_adl2373
crossref_primary_10_5194_hess_19_91_2015
crossref_primary_10_1016_j_jhydrol_2022_127898
crossref_primary_10_1038_s41598_019_48528_z
crossref_primary_10_1038_s41467_025_58716_3
crossref_primary_10_1029_2020WR027883
crossref_primary_10_1029_2024WR039692
crossref_primary_10_3103_S0145875225700139
crossref_primary_10_1029_2024JD043143
crossref_primary_10_1016_j_jnc_2021_126043
crossref_primary_10_1016_j_quascirev_2018_09_008
crossref_primary_10_1002_esp_4999
crossref_primary_10_1051_e3sconf_202022303007
crossref_primary_10_1038_s41597_023_02215_x
crossref_primary_10_1111_fwb_14073
crossref_primary_10_1007_s10040_022_02570_w
crossref_primary_10_1016_j_heliyon_2024_e31643
crossref_primary_10_1016_j_envsoft_2020_104927
crossref_primary_10_1016_j_earscirev_2022_104288
crossref_primary_10_1016_j_marenvres_2025_107017
crossref_primary_10_1029_2021GL096676
crossref_primary_10_3390_rs14195009
crossref_primary_10_1029_2024GL114047
crossref_primary_10_1016_j_jhydrol_2025_133794
crossref_primary_10_1371_journal_pone_0120198
crossref_primary_10_1002_aqc_3902
crossref_primary_10_5194_hess_28_1215_2024
crossref_primary_10_1111_brv_70059
crossref_primary_10_1038_s44221_024_00208_7
crossref_primary_10_1038_s41467_024_54853_3
crossref_primary_10_1111_sed_13062
crossref_primary_10_1038_s41893_024_01359_x
crossref_primary_10_1038_s41597_020_0436_4
crossref_primary_10_1016_j_biocon_2023_110233
crossref_primary_10_5194_hess_21_5143_2017
crossref_primary_10_3390_w12030788
crossref_primary_10_1111_jbi_14263
crossref_primary_10_1139_gen_2025_0041
crossref_primary_10_1029_2024EF005070
crossref_primary_10_3390_rs13142764
crossref_primary_10_1007_s11269_025_04227_1
crossref_primary_10_1038_s41467_023_37062_2
crossref_primary_10_3390_rs16050813
crossref_primary_10_5194_nhess_25_2351_2025
crossref_primary_10_1007_s10346_024_02447_x
crossref_primary_10_3390_rs16122078
crossref_primary_10_3390_w17071098
crossref_primary_10_1029_2020EF001668
crossref_primary_10_1038_s41597_024_03752_9
crossref_primary_10_1111_1365_2664_70057
crossref_primary_10_1016_j_jglr_2021_06_006
crossref_primary_10_3389_fgene_2020_596662
crossref_primary_10_1016_j_scitotenv_2023_168120
crossref_primary_10_1038_s41597_023_02618_w
crossref_primary_10_1038_s41597_025_04406_0
crossref_primary_10_1038_s41893_018_0064_6
crossref_primary_10_1073_pnas_2413013121
crossref_primary_10_1038_s41467_022_33239_3
crossref_primary_10_1029_2020WR028096
crossref_primary_10_1002_2016JF004175
crossref_primary_10_1038_s41893_022_00936_2
crossref_primary_10_1111_1752_1688_12456
crossref_primary_10_1002_gdj3_111
crossref_primary_10_1016_j_geomorph_2015_06_047
crossref_primary_10_1016_j_eti_2024_103686
crossref_primary_10_1029_2023GL105804
crossref_primary_10_1029_2020GL090374
crossref_primary_10_1029_2020GL090134
crossref_primary_10_1038_s43247_025_02320_2
crossref_primary_10_1111_geb_70065
crossref_primary_10_3390_w11091760
crossref_primary_10_1038_s43247_024_01655_6
crossref_primary_10_1016_j_jhydrol_2023_129705
crossref_primary_10_1029_2024JB029023
crossref_primary_10_1525_elementa_2024_00031
crossref_primary_10_1007_s00382_020_05381_5
crossref_primary_10_1007_s11442_025_2347_y
crossref_primary_10_3390_d14100848
crossref_primary_10_1007_s10712_015_9348_9
crossref_primary_10_1126_science_aat0636
crossref_primary_10_1038_s41597_022_01888_0
crossref_primary_10_1007_s00704_023_04388_2
crossref_primary_10_1007_s10661_024_13315_5
crossref_primary_10_5194_piahs_385_103_2024
crossref_primary_10_1016_j_watres_2024_122782
crossref_primary_10_1007_s10531_024_02782_4
crossref_primary_10_1038_s41597_022_01613_x
crossref_primary_10_1016_j_biocon_2019_108399
crossref_primary_10_1007_s10584_020_02828_w
crossref_primary_10_1029_2022JB024176
crossref_primary_10_1029_2024WR038183
crossref_primary_10_1016_j_atmosres_2024_107761
crossref_primary_10_5194_bg_13_1387_2016
crossref_primary_10_1016_j_envres_2023_118040
crossref_primary_10_1029_2024MS004379
crossref_primary_10_3897_BDJ_12_e109785
crossref_primary_10_1016_j_quascirev_2020_106656
crossref_primary_10_1029_2025EF006499
crossref_primary_10_1016_j_apgeog_2022_102716
crossref_primary_10_1073_pnas_2211942119
crossref_primary_10_3390_d14100842
crossref_primary_10_1126_science_adn1262
crossref_primary_10_5194_gmd_18_4601_2025
crossref_primary_10_1016_j_envpol_2025_126062
crossref_primary_10_1029_2021EF002420
crossref_primary_10_1016_j_ecolind_2023_110256
crossref_primary_10_1111_fwb_13805
crossref_primary_10_1007_s10346_024_02421_7
crossref_primary_10_1016_j_rse_2019_03_014
crossref_primary_10_5194_essd_15_521_2023
crossref_primary_10_3389_fclim_2022_902586
crossref_primary_10_1007_s10661_023_11448_7
crossref_primary_10_1038_s41597_022_01844_y
crossref_primary_10_1038_s41598_019_54980_8
crossref_primary_10_1111_geb_13299
crossref_primary_10_3390_land14050985
crossref_primary_10_5194_esd_8_653_2017
crossref_primary_10_1080_17538947_2025_2449706
crossref_primary_10_1088_1755_1315_502_1_012035
crossref_primary_10_1111_csp2_12853
crossref_primary_10_1016_j_ejrh_2025_102713
crossref_primary_10_1038_s44185_025_00098_2
crossref_primary_10_3390_cli11060118
crossref_primary_10_1016_j_horiz_2022_100039
crossref_primary_10_1029_2023JG007502
crossref_primary_10_1680_jensu_23_00080
crossref_primary_10_1016_j_jag_2022_103037
crossref_primary_10_1016_j_scitotenv_2021_145944
crossref_primary_10_1007_s43832_024_00179_6
crossref_primary_10_1073_pnas_1902484116
crossref_primary_10_1111_geb_70026
crossref_primary_10_3390_f11080804
crossref_primary_10_1002_hyp_13601
crossref_primary_10_1016_j_biocon_2024_110591
crossref_primary_10_1175_BAMS_D_16_0036_1
crossref_primary_10_1007_s11069_021_05010_2
crossref_primary_10_1007_s10750_022_05056_8
crossref_primary_10_1111_gcb_17289
crossref_primary_10_1016_j_geomorph_2023_109048
crossref_primary_10_1061_JGGEFK_GTENG_13737
Cites_doi 10.1016/S0022-1694(02)00283-4
10.1029/2001GB001396
10.1016/j.jenvman.2009.05.020
10.1029/2008GB003435
10.1007/978‐3‐642‐10228‐8_35
10.1016/j.jhydrol.2011.08.004
10.1029/1998WR900068
10.5194/hess‐13‐2241‐2009
10.1080/07438141.2010.504321
10.1029/2008GLO35296
10.1002/(SICI)1099-1646(200001/02)16:1<83::AID-RRR567>3.0.CO;2-T
10.1016/j.jhydrol.2009.02.007
10.1111/j.1467‐9671.2006.00254.x
10.1175/1087‐3562(1998)002<0001:DOTRIP>2.3.CO;2
10.1029/2010WR010090
10.1126/science.289.5477.284
10.1002/hyp.7252
10.1029/2007WR006331
10.1021/es980301x
10.1139/f80-017
10.1175/1520-0442(2000)013<0686:MTHSAT>2.0.CO;2
10.1175/2011JHM1345.1
10.1061/(ASCE)0733‐9496(1993)119:2(141
http://dx.doi.org/10.1016/j.asr.2012.11.002
10.1016/S0022-1694(00)00282-1
10.1016/j.jhydrol.2006.04.029
10.1016/j.gloenvcha.2003.10.004
10.1890/070062
10.1111/j.1466‐8238.2010.00587.x
10.1029/1999GB900046
10.1016/j.envsoft.2010.01.007
10.1016/j.jhydrol.2011.06.007
10.1029/2006JD007847
10.1175/2011JHM1324.1
10.1068/b2624
10.1016/j.geomorph.2010.03.018
10.1029/2001WR900024
10.1021/es034430b
10.1623/hysj.48.3.317.45290
10.1016/j.jhydrol.2009.02.043
10.1016/S0022‐1694(99)00011‐6
10.1111/j.1752-1688.1994.tb03321.x
10.1016/j.rse.2011.03.009
10.1016/S0921‐8181(03)00023‐7
10.1016/j.scitotenv.2009.10.046
10.1007/s10980-008-9283-y
10.1016/j.jhydrol.2005.11.011
10.1016/j.jhydrol.2009.09.028
10.1890/1540‐9295(2005)003[0138:AGAFDS]2.0.CO;2
10.1016/j.jhydrol.2012.02.045
10.1016/j.jhydrol.2004.03.028
10.1038/nature09549
10.1016/S0022‐1694(01)00565‐0
10.1029/2008EO100001
10.1080/014311600210191
10.1016/j.cageo.2008.04.007
10.5194/hess-14-1-2010
10.1029/2010WR009726
10.1016/j.jhydrol.2012.01.005
10.1002/hyp.5145
10.1899/09‐073.1
10.1007/s00267-002-2737-0
10.1126/science.1128845
10.1006/jema.2000.0372
10.1016/S0022‐1694(00)00178‐5
10.5194/hessd‐4‐4389‐2007
10.1890/100014
10.1029/2008GB003281
10.1002/hyp.7795
10.1890/100125
10.1002/rra.1150
10.1029/2007GB002947
10.5194/hess-13-2413-2009
10.1016/j.jhydrol.2006.03.009
10.1073/pnas.1010808108
10.1016/j.jhydrol.2009.07.031
10.5194/hess-9-535-2005
10.1111/j.1365‐2427.2008.02135.x
10.1007/s10533‐008‐9274‐8
10.1016/j.crte.2009.12.004
10.1641/0006‐3568(2006)56[591:LSISE]2.0.CO;2
10.1016/S0304‐3894(98)00108‐3
10.1038/ngeo629
10.1029/GB003i003p00241
10.1007/BF02592101
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/hyp.9740
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1099-1085
EndPage 2186
ExternalDocumentID 10_1002_hyp_9740
HYP9740
ark_67375_WNG_VR13B1FR_4
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~KM
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RWI
WRC
WWD
AAYXX
CITATION
O8X
ID FETCH-LOGICAL-a3260-aa12c59561e194db75cf25d08e2caf0a3f4617e2ed66269c393cfe4bf24deeac3
IEDL.DBID DRFUL
ISICitedReferencesCount 1264
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000325218100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6087
IngestDate Tue Nov 18 22:39:16 EST 2025
Sat Nov 29 03:02:41 EST 2025
Wed Jan 22 16:45:23 EST 2025
Tue Nov 11 03:32:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3260-aa12c59561e194db75cf25d08e2caf0a3f4617e2ed66269c393cfe4bf24deeac3
Notes istex:C8184B674017252BB1EF6E13EB5131BD946C7B76
ark:/67375/WNG-VR13B1FR-4
ArticleID:HYP9740
PageCount 16
ParticipantIDs crossref_primary_10_1002_hyp_9740
crossref_citationtrail_10_1002_hyp_9740
wiley_primary_10_1002_hyp_9740_HYP9740
istex_primary_ark_67375_WNG_VR13B1FR_4
PublicationCentury 2000
PublicationDate 2013-07-15
15 July 2013
PublicationDateYYYYMMDD 2013-07-15
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-15
  day: 15
PublicationDecade 2010
PublicationTitle Hydrological processes
PublicationTitleAlternate Hydrol. Process
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References MRC (Mekong River Commission). 2009. Hydropower Project Database. Mekong River Commission: Vientiane, Lao PDR.
MacDonald GK, Bennett EM, Potter PA, Ramankutty N. 2011. Agronomic phosphorus imbalances across the world's croplands. Proceedings of the National Academy of Sciences of the United States of America 108: 3086-91. DOI:10.1073/pnas.1010808108
Ahuja RK, Magnanti TL, Orlin JB. 1993. Network flows: theory, algorithms and applications. Prentice Hall: Englewood Cliffs, NJ.
Cote D, Kehler DG, Bourne C, Wiersma YF. 2009. A new measure of longitudinal connectivity for stream networks. Landscape Ecology 24: 101-113.
Whiteaker TL, Maidment DR, Goodall JL, Takamatsu M. 2006. Integrating Arc Hydro Features with a Schematic Network. Transactions in GIS 10: 219-237. DOI:10.1111/j.1467-9671.2006.00254.x
Coe MT. 2000. Modeling terrestrial hydrological systems at the continental scale: Testing the accuracy of an atmospheric GCM. Journal of Climate 13: 686-704.
Bunn SE, Arthington AH. 2002. Basic principles and consequences of altered hydrological regimes for aquatic biodiversity. Environmental Management 30: 492-507.
Ellis EC, Ramankutty N. 2008. Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment 6: 439-447.
Siebert S, Döll P, Hoogeveen J, Faures J-M, Frenken K, Feick S. 2005. Development and validation of the global map of irrigation areas. Hydrology and Earth System Sciences 9: 535-547.
Klein Goldewijk K, Beusen A, Van Drecht G, De Vos M. 2011. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecology and Biogeography 20: 73-86. DOI:10.1111/j.1466-8238.2010.00587.x
Yamazaki D, Oki T, Kanae S. 2009. Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map. Hydrology and Earth System Sciences 13: 2241-2251. DOI:10.5194/hess-13-2241-2009
Alcamo J, Döll P, Henrichs T, Kaspar F, Lehner B, Rösch T, Siebert S. 2003. Development and testing of the WaterGAP 2 global model of water use and availability. Hydrological Sciences Journal 48: 317-337. DOI:10.1623/hysj.48.3.317.45290
Alexander RB, Böhlke JK, Boyer EW, David MB, Harvey JW, Mulholland PJ, Seitzinger SP, Tobias CR, Tonitto C, Wollheim WM. 2009. Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes. Biogeochemistry 93: 91-116. DOI:10.1007/s10533-008-9274-8
Lehner B, Verdin K, Jarvis A. 2008. New global hydrography derived from spaceborne elevation data. EOS, Transactions of the American Geophysical Union 89: 93-104.
Pistocchi A, Vizcaino P, Hauck M. 2009. A GIS model-based screening of potential contamination of soil and water by pyrethroids in Europe. Journal of Environmental Management 90: 3410-21. DOI:10.1016/j.jenvman.2009.05.020
Richter BD, Postel S, Revenga C, Scudder T, Lehner B, Churchill A, Chow M. 2010. Lost in development's shadow: The downstream human consequences of dams. Water Alternatives 3: 14-42.
Ganio LM, Torgersen CE, Gresswell RE. 2005. A geostatistical approach for describing spatial pattern in stream networks. Frontiers in Ecology and the Environment 3: 138-144. DOI:10.1890/1540-9295(2005)003[0138:AGAFDS]2.0.CO;2
Hanasaki N, Inuzuka T, Kanae S, Oki T. 2010. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. Journal of Hydrology 384: 232-244. DOI:10.1016/j.jhydrol.2009.09.028
FAO, IIASA, ISRIC, ISS-CAS, and JRC. 2012. Harmonized World Soil Database (version 1.2). FAO: Rome, Italy, and IIASA: Laxenburg, Austria.
Andersson E, Nilsson C, Johansson ME. 2000. Effects of river fragmentation on plant dispersal and riparian flora. Regulated Rivers: Research & Management 16: 83-89.
Vieux BE, Needham S. 1993. Nonpoint-Pollution Model Sensitivity to Grid-Cell Size. Journal of Water Resources Planning and Management 119: 141-157. DOI:10.1061/(ASCE)0733-9496(1993)119:2(141)
Feijtel T, Boeije G, Matthies M, Young A, Morris G, Gandolfi C, Hansen B, Fox K, Matthijs E, Koch V, Schroder R, Cassani G, Schowanek D, Rosenblom J, Holt M. 1998. Development of a geography-referenced regional exposure assessment tool for European rivers-GREAT-ER. Journal of Hazardous Materials 61: 59-65. DOI:10.1016/S0304-3894(98)00108-3
Oki T, Sud YC. 1998. Design of Total Runoff Integrating Pathways (TRIP)-A Global River Channel Network. Earth Interactions 2: 1-37. DOI:10.1175/1087-3562(1998)002<0001:DOTRIP>2.3.CO;2
Maidment DR. 1993. Handbook of Hydrology. McGraw-Hill: New York.
Lehner B, Liermann CR, Revenga C, Vörösmarty CJ, Fekete B, Crouzet P, Döll P, Endejan M, Frenken K, Magome J, Nilsson C, Robertson JC, Rödel R, Sindorf N, Wisser D. 2011. High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment 9: 494-502. DOI:10.1890/100125
Wang X, White-Hull C, Dyer S, Yang Y. 2000. GIS-ROUT: a river model for watershed planning. Environment and Planning B: Planning and Design 27: 231-246. DOI:10.1068/b2624
Kummu M, Lu XX, Wang JJ, Varis O. 2010. Basin-wide sediment trapping efficiency of emerging reservoirs along the Mekong. Geomorphology 119: 181-197. DOI:10.1016/j.geomorph.2010.03.018
Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K. 2011. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment 9: 53-60. DOI:10.1890/100014
Paiva RCD, Collischonn W, Tucci CEM. 2011. Large scale hydrologic and hydrodynamic modelling using limited data and a GIS based approach. Journal of Hydrology 406: 170-181.
Vörösmarty CJ, Moore III B, Grace AL, Gildea MP, Melillo JM, Peterson BJ, Rastetter EB, Steudler PA . 1989. Continental scale models of water balance and fluvial transport: an application to South America. Global Biogeochemical Cycles 3: 241-265.
Rost S, Gerten D, Bondeau A, Lucht W, Rohwer J, Schaphoff S. 2008. Agricultural green and blue water consumption and its influence on the global water system. Water Resources Research 44: 1-17. DOI:10.1029/2007WR006331
Sahoo AK, Pan M, Troy TJ, Vinukollu RK, Sheffield J, Wood EF. 2011. Reconciling the global terrestrial water budget using satellite remote sensing. Remote Sensing of Environment 115: 1850-1865. DOI:10.1016/j.rse.2011.03.009
Yamazaki D, Kanae S, Kim H, Oki T. 2011. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resources Research 47: 1-21. DOI:10.1029/2010WR009726
David CH, Maidment DR, Niu G-Y, Yang Z-L, Habets F, Eijkhout V. 2011. River Network Routing on the NHDPlus Dataset. Journal of Hydrometeorology 12: 913-934. DOI:10.1175/2011JHM1345.1
Donner SD, Coe MT, Lenters JD, Twine TE, Foley JA. 2002. Modeling the impact of hydrological changes on nitrate transport in the Mississippi River Basin from 1955 to 1994. Global Biogeochemical Cycles 16: 1-19. DOI:10.1029/2001GB001396
Graham ST, Famiglietti JS, Maidment DR. 1999. Five-Minute, 1/2°, and 1° Data Sets of Continental Watersheds and River Networks for Use in Regional and Global Hydrologic and Climate System Modeling Studies. Water Resources Research 35: 583-587. DOI:10.1029/1998WR900068
Hollister J, Milstead WB. 2010. Using GIS to estimate lake volume from limited data. Lake and Reservoir Management 26: 194-199. DOI:10.1080/07438141.2010.504321
Yamazaki D, Baugh C, Bates PD, Kanae S, Alsdorf DE, Oki T. 2012. Adjustment of a spaceborne DEM for use in floodplain hydrodynamic modelling. Journal of Hydrology 436-437: 81-91. DOI:10.1016/j.jhydrol.2012.02.045
Llovel W, Becker M, Cazenave A, Crétaux J-F, Ramillien G. 2010. Global land water storage change from GRACE over 2002-2009; Inference on sea level. Comptes Rendus Geoscience 342: 179-188. DOI:10.1016/j.crte.2009.12.004
Aspinall R, Pearson D. 2000. Integrated geographical assessment of environmental condition in water catchments: Linking landscape ecology, environmental modelling and GIS. Journal of Environmental Management 59: 299-319. DOI:10.1006/jema.2000.0372
Monfreda C, Ramankutty N, Foley JA. 2008. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year. Global Biogeochemical Cycles, 22: 1-19.
Pistocchi A, Pennington D. 2006. European hydraulic geometries for continental scale environmental modelling. Journal of Hydrology 329: 553-567. DOI:10.1016/j.jhydrol.2006.03.009
Wisser D, Fekete BM, Vörösmarty CJ, Schumann AH. 2010. Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network-Hydrology (GTN-H). Hydrology and Earth System Sciences 14: 1-24.
Renssen H, Knoop JM. 2000. A global river routing network for use in hydrological modeling. Journal of Hydrology 230: 230-243. DOI:10.1016/S0022-1694(00)00178-5
Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Reidy Liermann C, Davies PM. 2010. Global threats to human water security and river biodiversity. Nature 467: 555-561. DOI:10.1038/nature09549
Döll P, Lehner B. 2002. Validation of a new global 30-min drainage direction map. Journal of Hydrology 258: 214-231. DOI:10.1016/S0022-1694(01)00565-0
Loveland T, Reed B, Brown J, Ohlen D, Zhu Z, Yang L, Merchant J. 2000. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing 21: 1303-1330.
Verdin KL, Verdin JP. 1999. A topological system for delineation and codification of the Earth's river basins. Journal of Hydrology 218: 1-12. DOI:10.1016/S0022-1694(99)00011-6
Lassalle G, Crouzet P, Rochard E. 2009. Modelling the current distribution of European diadromous fishes: an approach integrating regional anthropogenic pressures. Freshwater Biology 54: 587-606. DOI:10.1111/j.1365-2427.2008.02135.x
Alvarez-Cobelas M, Sánchez-Carrillo S, Angeler DG, Sánchez-Andrés R. 2009. Pho
2002; 16
2010; 56
2011; 115
2010; 14
2010; 467
2010; 342
2012; 436–437
2003; 270
2006; 330
1996; 73
2010; 384
2008; 35
2003; 17
2011; 12
2008; 6
1980; 37
2009; 13
2004; 296
2011; 406
2006; 329
2010; 26
2000; 16
2009; 54
2010; 25
2010; 24
2000; 59
2010; 119
2000
2004; 38
2011; 408
2009; 93
2000; 13
2009; 90
2011; 20
1999; 13
2003; 48
2008; 24
2007; 4
2008; 22
2011; 25
2010; 3
2006; 327
1994; 30
2009; 368
2009; 369
1999; 218
2009; 23
1989; 3
2009; 24
2010; 408
2000; 27
2002; 30
2012
2011
2010
2006; 10
2000a; 237
2000; 21
2009
2008
2002; 258
2007
2000; 230
2003; 39
1993
1998; 61
2003
2002
2006; 313
2009; 28
2011; 9
2007; 112
2009; 35
2011; 108
1993; 119
2004; 14
2005; 9
2012; 424–425
1999; 35
2000b; 289
2008; 89
2001; 37
1998; 2
2008; 44
2005; 3
2011; 47
1997; 606
2009; 2
1998; 32
1988; 60
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
MRC (Mekong River Commission) (e_1_2_9_61_1) 2009
e_1_2_9_71_1
Fekete B (e_1_2_9_34_1) 2001; 37
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
Ahuja RK (e_1_2_9_2_1) 1993
FAO (e_1_2_9_32_1) 2012
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_9_1
Richter BD (e_1_2_9_75_1) 2010; 3
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_101_1
Butkus SR (e_1_2_9_18_1) 1988; 60
e_1_2_9_39_1
e_1_2_9_16_1
Maidment DR (e_1_2_9_58_1) 2002
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
Chapra SC (e_1_2_9_19_1) 1997
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
Maidment DR (e_1_2_9_57_1) 1993
References_xml – reference: Llovel W, Becker M, Cazenave A, Crétaux J-F, Ramillien G. 2010. Global land water storage change from GRACE over 2002-2009; Inference on sea level. Comptes Rendus Geoscience 342: 179-188. DOI:10.1016/j.crte.2009.12.004
– reference: Portmann FT, Siebert S, Döll P. 2010. MIRCA2000 - Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles 24: GB1011. DOI:10.1029/2008GB003435
– reference: Yamazaki D, Baugh C, Bates PD, Kanae S, Alsdorf DE, Oki T. 2012. Adjustment of a spaceborne DEM for use in floodplain hydrodynamic modelling. Journal of Hydrology 436-437: 81-91. DOI:10.1016/j.jhydrol.2012.02.045
– reference: Prigent C, Papa F, Aires F, Rossow WB, Matthews E. 2007. Global inundation dynamics inferred from multiple satellite observations, 1993-2000. Journal of Geophysical Research 112: 1-13. DOI:10.1029/2006JD007847
– reference: Alexander RB, Böhlke JK, Boyer EW, David MB, Harvey JW, Mulholland PJ, Seitzinger SP, Tobias CR, Tonitto C, Wollheim WM. 2009. Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes. Biogeochemistry 93: 91-116. DOI:10.1007/s10533-008-9274-8
– reference: Coe MT, Costa MH, Soares-Filho BS. 2009. The influence of historical and potential future deforestation on the stream flow of the Amazon River - Land surface processes and atmospheric feedbacks. Journal of Hydrology 369: 165-174. DOI:10.1016/j.jhydrol.2009.02.043
– reference: Vörösmarty CJ, Fekete B, Meybeck M, Lammers RB. 2000a. Geomorphometric attributes of the global system of rivers at 30-minute spatial resolution. Journal of Hydrology 237: 17-39.
– reference: Anderson PD, D'Aco VJ, Shanahan P, Chapra SC, Buzby ME, Cunningham VL, Duplessie BM, Hayes EP, Mastrocco FJ, Parke NJ, Rader JC, Samuelian JH, Schwab BW. 2004. Screening analysis of human pharmaceutical compounds in U.S. surface waters. Environmental Science and Technology 38: 838-49.
– reference: Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K. 2011. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment 9: 53-60. DOI:10.1890/100014
– reference: Maidment DR. 2002. Arc Hydro: GIS for water resources. ESRI Press: Redlands, California.
– reference: Vörösmarty CJ, Moore III B, Grace AL, Gildea MP, Melillo JM, Peterson BJ, Rastetter EB, Steudler PA . 1989. Continental scale models of water balance and fluvial transport: an application to South America. Global Biogeochemical Cycles 3: 241-265.
– reference: Aspinall R, Pearson D. 2000. Integrated geographical assessment of environmental condition in water catchments: Linking landscape ecology, environmental modelling and GIS. Journal of Environmental Management 59: 299-319. DOI:10.1006/jema.2000.0372
– reference: Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT, Brakenridge GR, Day J, Vörösmarty CJ, Saito Y, Giosan L, Nicholls RJ. 2009. Sinking deltas due to human activities. Nature Geoscience 2: 681-686. DOI:10.1038/ngeo629
– reference: Döll P, Fiedler K, and Zhang J. 2009. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrology and Earth System Sciences Discussions 13: 2413-2432.
– reference: Verzano K, Bärlund I, Flörke M, Lehner B, Kynast E, Voß F, Alcamo J. 2012. Modeling variable river flow velocity on continental scale: Current situation and climate change impacts in Europe. Journal of Hydrology 424-425: 238-251. DOI:10.1016/j.jhydrol.2012.01.005
– reference: Wisser D, Fekete BM, Vörösmarty CJ, Schumann AH. 2010. Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network-Hydrology (GTN-H). Hydrology and Earth System Sciences 14: 1-24.
– reference: Beusen AHW, Bouwman AF, Dürr HH, Dekkers ALM, Hartmann J. 2009. Global patterns of dissolved silica export to the coastal zone: Results from a spatially explicit global model. Global Biogeochemical Cycles 23: 1-13. DOI:10.1029/2008GB003281
– reference: Coe MT. 2000. Modeling terrestrial hydrological systems at the continental scale: Testing the accuracy of an atmospheric GCM. Journal of Climate 13: 686-704.
– reference: Siebert S, Döll P. 2010. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. Journal of Hydrology 384: 198-217. DOI:10.1016/j.jhydrol.2009.07.031
– reference: Lehner B, Verdin K, Jarvis A. 2008. New global hydrography derived from spaceborne elevation data. EOS, Transactions of the American Geophysical Union 89: 93-104.
– reference: Ngo-Duc T, Oki T, Kanae S. 2007. A variable streamflow velocity method for global river routing model: model description and preliminary results. Hydrology and Earth System Sciences Discussions 4: 4389-4414. DOI:10.5194/hessd-4-4389-2007
– reference: Cote D, Kehler DG, Bourne C, Wiersma YF. 2009. A new measure of longitudinal connectivity for stream networks. Landscape Ecology 24: 101-113.
– reference: Chapra SC. 1997. Surface water-quality modeling, Vol. 606, 560-576. McGraw-Hill: New York.
– reference: Buser HR, Poiger T, Müller MD. 1998. Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: Rapid photodegradation in a lake. Environmental Science and Technology 32: 3449-3456. DOI:10.1021/es980301x
– reference: Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130-137.
– reference: Pistocchi A, Vizcaino P, Hauck M. 2009. A GIS model-based screening of potential contamination of soil and water by pyrethroids in Europe. Journal of Environmental Management 90: 3410-21. DOI:10.1016/j.jenvman.2009.05.020
– reference: MRC (Mekong River Commission). 2009. Hydropower Project Database. Mekong River Commission: Vientiane, Lao PDR.
– reference: Siebert S, Döll P, Hoogeveen J, Faures J-M, Frenken K, Feick S. 2005. Development and validation of the global map of irrigation areas. Hydrology and Earth System Sciences 9: 535-547.
– reference: Vieux BE, Needham S. 1993. Nonpoint-Pollution Model Sensitivity to Grid-Cell Size. Journal of Water Resources Planning and Management 119: 141-157. DOI:10.1061/(ASCE)0733-9496(1993)119:2(141)
– reference: Ellis EC, Ramankutty N. 2008. Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment 6: 439-447.
– reference: Arnell NW, Livermore MJL, Kovats S, Levy PE, Nicholls R, Parry ML, Gaffin SR. 2004. Climate and socio-economic scenarios for global-scale climate change impacts assessments: characterising the SRES storylines. Global Environmental Change 14: 3-20. DOI:10.1016/j.gloenvcha.2003.10.004
– reference: Oki T, Kanae S. 2006. Global Hydrological Cycles and World Water Resources. Science 313(5790): 1068-1072.
– reference: Ahuja RK, Magnanti TL, Orlin JB. 1993. Network flows: theory, algorithms and applications. Prentice Hall: Englewood Cliffs, NJ.
– reference: Loveland T, Reed B, Brown J, Ohlen D, Zhu Z, Yang L, Merchant J. 2000. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing 21: 1303-1330.
– reference: Beighley RE, Eggert KG, Dunne T, He Y, Gummadi V, Verdin KL. 2009. Simulating hydrologic and hydraulic processes throughout the Amazon River Basin. Hydrological Processes 23: 1221-1235. DOI:10.1002/hyp.7252
– reference: Lassalle G, Crouzet P, Rochard E. 2009. Modelling the current distribution of European diadromous fishes: an approach integrating regional anthropogenic pressures. Freshwater Biology 54: 587-606. DOI:10.1111/j.1365-2427.2008.02135.x
– reference: Mayorga E, Seitzinger SP, Harrison JA, Dumont E, Beusen AHW, Bouwman AF, Fekete B, Kroeze C, Van Drecht G. 2010. Global Nutrient Export from WaterSheds 2 (NEWS 2): Model development and implementation. Environmental Modelling and Software 25: 837-853. DOI:10.1016/j.envsoft.2010.01.007
– reference: Pringle C. 2003. What is hydrologic connectivity and why is it ecologically important? Hydrological Processes 17: 2685-2689. DOI:10.1002/hyp.5145
– reference: Graham ST, Famiglietti JS, Maidment DR. 1999. Five-Minute, 1/2°, and 1° Data Sets of Continental Watersheds and River Networks for Use in Regional and Global Hydrologic and Climate System Modeling Studies. Water Resources Research 35: 583-587. DOI:10.1029/1998WR900068
– reference: Kummu M, Lu XX, Wang JJ, Varis O. 2010. Basin-wide sediment trapping efficiency of emerging reservoirs along the Mekong. Geomorphology 119: 181-197. DOI:10.1016/j.geomorph.2010.03.018
– reference: Gong L, Widén-Nilsson E, Halldin S, Xu C-Y. 2009. Large-scale runoff routing with an aggregated network-response function. Journal of Hydrology 368: 237-250. DOI:10.1016/j.jhydrol.2009.02.007
– reference: Döll P, Kaspar F, Lehner B. 2003. A global hydrological model for deriving water availability indicators: model tuning and validation. Journal of Hydrology 270: 105-134.
– reference: Monfreda C, Ramankutty N, Foley JA. 2008. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year. Global Biogeochemical Cycles, 22: 1-19.
– reference: Cherkassky BV, Goldberg AV, Radzik T. 1996. Shortest paths algorithms: theory and experimental evaluation. Mathematical Programming 73: 129-174.
– reference: Seyler F, Calmant S, da Silva JS, Moreira DM, Mercier F, Shum CK. 2012. From TOPEX/Poseidon to Jason-2/OSTM in the Amazon basin. Advances in Space Research, DOI: http://dx.doi.org/10.1016/j.asr.2012.11.002
– reference: Hanasaki N, Kanae S, Oki T. 2006. A reservoir operation scheme for global river routing models. Journal of Hydrology 327: 22-41.
– reference: Feijtel T, Boeije G, Matthies M, Young A, Morris G, Gandolfi C, Hansen B, Fox K, Matthijs E, Koch V, Schroder R, Cassani G, Schowanek D, Rosenblom J, Holt M. 1998. Development of a geography-referenced regional exposure assessment tool for European rivers-GREAT-ER. Journal of Hazardous Materials 61: 59-65. DOI:10.1016/S0304-3894(98)00108-3
– reference: MacDonald GK, Bennett EM, Potter PA, Ramankutty N. 2011. Agronomic phosphorus imbalances across the world's croplands. Proceedings of the National Academy of Sciences of the United States of America 108: 3086-91. DOI:10.1073/pnas.1010808108
– reference: Ramankutty N, Foley JA. 1999. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochemical Cycles 13: 997-1027.
– reference: Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Reidy Liermann C, Davies PM. 2010. Global threats to human water security and river biodiversity. Nature 467: 555-561. DOI:10.1038/nature09549
– reference: Allen PM, Arnold JG, Byars BW. 1994. Downstream channel geometry for use in planning-level models. Water Resources Bulletin 30: 663-671.
– reference: FAO, IIASA, ISRIC, ISS-CAS, and JRC. 2012. Harmonized World Soil Database (version 1.2). FAO: Rome, Italy, and IIASA: Laxenburg, Austria.
– reference: Fürst J, Hörhan T. 2009. Coding of watershed and river hierarchy to support GIS-based hydrological analyses at different scales. Computers and Geosciences 35: 688-696. DOI:10.1016/j.cageo.2008.04.007
– reference: Oki T, Sud YC. 1998. Design of Total Runoff Integrating Pathways (TRIP)-A Global River Channel Network. Earth Interactions 2: 1-37. DOI:10.1175/1087-3562(1998)002<0001:DOTRIP>2.3.CO;2
– reference: Pistocchi A, Sarigiannis DA, Vizcaino P. 2010. Spatially explicit multimedia fate models for pollutants in Europe: state of the art and perspectives. The Science of the Total Environment 408: 3817-30. DOI:10.1016/j.scitotenv.2009.10.046
– reference: David CH, Maidment DR, Niu G-Y, Yang Z-L, Habets F, Eijkhout V. 2011. River Network Routing on the NHDPlus Dataset. Journal of Hydrometeorology 12: 913-934. DOI:10.1175/2011JHM1345.1
– reference: Verdin KL, Verdin JP. 1999. A topological system for delineation and codification of the Earth's river basins. Journal of Hydrology 218: 1-12. DOI:10.1016/S0022-1694(99)00011-6
– reference: Yamazaki D, Oki T, Kanae S. 2009. Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map. Hydrology and Earth System Sciences 13: 2241-2251. DOI:10.5194/hess-13-2241-2009
– reference: Ganio LM, Torgersen CE, Gresswell RE. 2005. A geostatistical approach for describing spatial pattern in stream networks. Frontiers in Ecology and the Environment 3: 138-144. DOI:10.1890/1540-9295(2005)003[0138:AGAFDS]2.0.CO;2
– reference: Butkus SR, Welch EB, Horner RR, Spyridakis DE. 1988. Lake response modeling using available biologically phosphorus. Journal of the Water Pollution Control Federation 60: 1663-1669.
– reference: Fekete B, Gibson J, Aggarwal LP, Vörösmarty CJ. 2006. Application of isotope tracers in continental scale hydrological modeling. Journal of Hydrology 330: 444-456. DOI:10.1016/j.jhydrol.2006.04.029
– reference: Lehner B, Döll P. 2004. Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296: 1-22.
– reference: Vörösmarty CJ, Green P, Salisbury J, Lammers RB. 2000b. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 289(5477): 284-288. DOI:10.1126/science.289.5477.284
– reference: Fekete B, Vörösmarty CJ, Lammers RB. 2001. Scaling gridded river networks for macroscale hydrology: Development, analysis, and control of error. Water Resources 37: 1955-1967.
– reference: Döll P, Lehner B. 2002. Validation of a new global 30-min drainage direction map. Journal of Hydrology 258: 214-231. DOI:10.1016/S0022-1694(01)00565-0
– reference: James WF, Richardson WB, Soballe DM. 2008. Effects of residence time on summer nitrate uptake in mississippi river flow-regulated backwaters. River Research and Applications 24: 1206-1217. DOI:10.1002/rra.1150
– reference: Hanasaki N, Inuzuka T, Kanae S, Oki T. 2010. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. Journal of Hydrology 384: 232-244. DOI:10.1016/j.jhydrol.2009.09.028
– reference: Alcamo J, Döll P, Henrichs T, Kaspar F, Lehner B, Rösch T, Siebert S. 2003. Development and testing of the WaterGAP 2 global model of water use and availability. Hydrological Sciences Journal 48: 317-337. DOI:10.1623/hysj.48.3.317.45290
– reference: Klein Goldewijk K, Beusen A, Van Drecht G, De Vos M. 2011. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecology and Biogeography 20: 73-86. DOI:10.1111/j.1466-8238.2010.00587.x
– reference: Lowe WH, Likens GE, Power ME. 2010. Linking scales in stream ecology. BioScience 56: 591-597. DOI:10.1641/0006-3568(2006)56[591:LSISE]2.0.CO;2
– reference: Rost S, Gerten D, Bondeau A, Lucht W, Rohwer J, Schaphoff S. 2008. Agricultural green and blue water consumption and its influence on the global water system. Water Resources Research 44: 1-17. DOI:10.1029/2007WR006331
– reference: Gong L, Halldin S, Xu C-Y. 2011. Global-scale river routing - an efficient time-delay algorithm based on HydroSHEDS high-resolution hydrography. Hydrological Processes 25: 1114-1128. DOI:10.1002/hyp.7795
– reference: Wisser D, Frolking S, Douglas EM, Fekete BM, Vörösmarty CJ, Schumann AH. 2008. Global irrigation water demand: Variability and uncertainties arising from agricultural and climate data sets. Geophysical Research Letters 35. DOI:10.1029/2008GLO35296.
– reference: Alvarez-Cobelas M, Sánchez-Carrillo S, Angeler DG, Sánchez-Andrés R. 2009. Phosphorus export from catchments: a global view. Journal of the North American Benthological Society 28: 805-820. DOI:10.1899/09-073.1
– reference: Lehner B, Liermann CR, Revenga C, Vörösmarty CJ, Fekete B, Crouzet P, Döll P, Endejan M, Frenken K, Magome J, Nilsson C, Robertson JC, Rödel R, Sindorf N, Wisser D. 2011. High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment 9: 494-502. DOI:10.1890/100125
– reference: Sahoo AK, Pan M, Troy TJ, Vinukollu RK, Sheffield J, Wood EF. 2011. Reconciling the global terrestrial water budget using satellite remote sensing. Remote Sensing of Environment 115: 1850-1865. DOI:10.1016/j.rse.2011.03.009
– reference: Maidment DR. 1993. Handbook of Hydrology. McGraw-Hill: New York.
– reference: Whiteaker TL, Maidment DR, Goodall JL, Takamatsu M. 2006. Integrating Arc Hydro Features with a Schematic Network. Transactions in GIS 10: 219-237. DOI:10.1111/j.1467-9671.2006.00254.x
– reference: Pistocchi A, Pennington D. 2006. European hydraulic geometries for continental scale environmental modelling. Journal of Hydrology 329: 553-567. DOI:10.1016/j.jhydrol.2006.03.009
– reference: Donner SD, Coe MT, Lenters JD, Twine TE, Foley JA. 2002. Modeling the impact of hydrological changes on nitrate transport in the Mississippi River Basin from 1955 to 1994. Global Biogeochemical Cycles 16: 1-19. DOI:10.1029/2001GB001396
– reference: Andersson E, Nilsson C, Johansson ME. 2000. Effects of river fragmentation on plant dispersal and riparian flora. Regulated Rivers: Research & Management 16: 83-89.
– reference: Paiva RCD, Collischonn W, Tucci CEM. 2011. Large scale hydrologic and hydrodynamic modelling using limited data and a GIS based approach. Journal of Hydrology 406: 170-181.
– reference: Haddeland I, Clark DB, Franssen W, Ludwig F, Voß F, Arnell NW, Bertrand N, Best M, Folwell S, Gerten D, Gomes S, Gosling SN, Hagemann S, Hanasaki N, Harding R, Heinke J, Kabat P, Koirala S, Oki T, Polcher J, Stacke T, Viterbo P, Weedon GP, Yeh P. 2011. Multimodel Estimate of the Global Terrestrial Water Balance: Setup and First Results. Journal of Hydrometeorology 12: 869-884. DOI:10.1175/2011JHM1324.1
– reference: Bunn SE, Arthington AH. 2002. Basic principles and consequences of altered hydrological regimes for aquatic biodiversity. Environmental Management 30: 492-507.
– reference: Wang X, White-Hull C, Dyer S, Yang Y. 2000. GIS-ROUT: a river model for watershed planning. Environment and Planning B: Planning and Design 27: 231-246. DOI:10.1068/b2624
– reference: Yamazaki D, Kanae S, Kim H, Oki T. 2011. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resources Research 47: 1-21. DOI:10.1029/2010WR009726
– reference: Richter BD, Postel S, Revenga C, Scudder T, Lehner B, Churchill A, Chow M. 2010. Lost in development's shadow: The downstream human consequences of dams. Water Alternatives 3: 14-42.
– reference: Vörösmarty CJ, Meybeck M, Fekete B, Sharma K, Green P, Syvitski JP. 2003. Anthropogenic sediment retention: major global impact from registered river impoundments. Global and Planetary Change 39: 169-190. DOI:10.1016/S0921-8181(03)00023-7
– reference: Hollister J, Milstead WB. 2010. Using GIS to estimate lake volume from limited data. Lake and Reservoir Management 26: 194-199. DOI:10.1080/07438141.2010.504321
– reference: Renssen H, Knoop JM. 2000. A global river routing network for use in hydrological modeling. Journal of Hydrology 230: 230-243. DOI:10.1016/S0022-1694(00)00178-5
– reference: Schneider C, Flörke M, Eisner S, Voss F. 2011. Large scale modelling of bankfull flow: an example for Europe. Journal of Hydrology 408: 235-245.
– reference: Wood EF, Roundy JK, Troy TJ, van Beek LPH, Bierkens MFP, Blyth E, de Roo A, Döll P, Ek M, Famiglietti J, Gochis D, Van De Giesen N, Houser P, Jaffé PR, Kollet S, Lehner B, Lettenmaier DP, Peters-Lidard C, Sivapalan M, Sheffield J, Wade A, Whitehead P. 2011. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water. Water Resources Research 47: 1-10. DOI:10.1029/2010WR010090
– year: 2011
– volume: 25
  start-page: 1114
  year: 2011
  end-page: 1128
  article-title: Global‐scale river routing ‐ an efficient time‐delay algorithm based on HydroSHEDS high‐resolution hydrography
  publication-title: Hydrological Processes
– volume: 368
  start-page: 237
  year: 2009
  end-page: 250
  article-title: Large‐scale runoff routing with an aggregated network‐response function
  publication-title: Journal of Hydrology
– volume: 61
  start-page: 59
  year: 1998
  end-page: 65
  article-title: Development of a geography‐referenced regional exposure assessment tool for European rivers—GREAT‐ER
  publication-title: Journal of Hazardous Materials
– volume: 436–437
  start-page: 81
  year: 2012
  end-page: 91
  article-title: Adjustment of a spaceborne DEM for use in floodplain hydrodynamic modelling
  publication-title: Journal of Hydrology
– volume: 14
  start-page: 3
  year: 2004
  end-page: 20
  article-title: Climate and socio‐economic scenarios for global‐scale climate change impacts assessments: characterising the SRES storylines
  publication-title: Global Environmental Change
– volume: 3
  start-page: 138
  year: 2005
  end-page: 144
  article-title: A geostatistical approach for describing spatial pattern in stream networks
  publication-title: Frontiers in Ecology and the Environment
– volume: 2
  start-page: 1
  year: 1998
  end-page: 37
  article-title: Design of Total Runoff Integrating Pathways (TRIP)—A Global River Channel Network
  publication-title: Earth Interactions
– volume: 28
  start-page: 805
  year: 2009
  end-page: 820
  article-title: Phosphorus export from catchments: a global view
  publication-title: Journal of the North American Benthological Society
– volume: 39
  start-page: 169
  year: 2003
  end-page: 190
  article-title: Anthropogenic sediment retention: major global impact from registered river impoundments
  publication-title: Global and Planetary Change
– volume: 27
  start-page: 231
  year: 2000
  end-page: 246
  article-title: GIS‐ROUT: a river model for watershed planning
  publication-title: Environment and Planning B: Planning and Design
– volume: 73
  start-page: 129
  year: 1996
  end-page: 174
  article-title: Shortest paths algorithms: theory and experimental evaluation
  publication-title: Mathematical Programming
– volume: 230
  start-page: 230
  year: 2000
  end-page: 243
  article-title: A global river routing network for use in hydrological modeling
  publication-title: Journal of Hydrology
– year: 2008
– volume: 47
  start-page: 1
  year: 2011
  end-page: 10
  article-title: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water
  publication-title: Water Resources Research
– volume: 408
  start-page: 235
  year: 2011
  end-page: 245
  article-title: Large scale modelling of bankfull flow: an example for Europe
  publication-title: Journal of Hydrology
– volume: 16
  start-page: 1
  year: 2002
  end-page: 19
  article-title: Modeling the impact of hydrological changes on nitrate transport in the Mississippi River Basin from 1955 to 1994
  publication-title: Global Biogeochemical Cycles
– volume: 13
  start-page: 2413
  year: 2009
  end-page: 2432
  article-title: Global‐scale analysis of river flow alterations due to water withdrawals and reservoirs
  publication-title: Hydrology and Earth System Sciences Discussions
– volume: 408
  start-page: 3817
  year: 2010
  end-page: 30
  article-title: Spatially explicit multimedia fate models for pollutants in Europe: state of the art and perspectives
  publication-title: The Science of the Total Environment
– volume: 60
  start-page: 1663
  year: 1988
  end-page: 1669
  article-title: Lake response modeling using available biologically phosphorus
  publication-title: Journal of the Water Pollution Control Federation
– year: 1993
– volume: 54
  start-page: 587
  year: 2009
  end-page: 606
  article-title: Modelling the current distribution of European diadromous fishes: an approach integrating regional anthropogenic pressures
  publication-title: Freshwater Biology
– volume: 108
  start-page: 3086
  year: 2011
  end-page: 91
  article-title: Agronomic phosphorus imbalances across the world's croplands
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– year: 2012
  article-title: From TOPEX/Poseidon to Jason‐2/OSTM in the Amazon basin
  publication-title: Advances in Space Research
– volume: 313
  start-page: 1068
  issue: 5790
  year: 2006
  end-page: 1072
  article-title: Global Hydrological Cycles and World Water Resources
  publication-title: Science
– volume: 47
  start-page: 1
  year: 2011
  end-page: 21
  article-title: A physically based description of floodplain inundation dynamics in a global river routing model
  publication-title: Water Resources Research
– year: 2007
– volume: 9
  start-page: 535
  year: 2005
  end-page: 547
  article-title: Development and validation of the global map of irrigation areas
  publication-title: Hydrology and Earth System Sciences
– volume: 119
  start-page: 181
  year: 2010
  end-page: 197
  article-title: Basin‐wide sediment trapping efficiency of emerging reservoirs along the Mekong
  publication-title: Geomorphology
– volume: 37
  start-page: 1955
  year: 2001
  end-page: 1967
  article-title: Scaling gridded river networks for macroscale hydrology: Development, analysis, and control of error
  publication-title: Water Resources
– volume: 21
  start-page: 1303
  year: 2000
  end-page: 1330
  article-title: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data
  publication-title: International Journal of Remote Sensing
– volume: 26
  start-page: 194
  year: 2010
  end-page: 199
  article-title: Using GIS to estimate lake volume from limited data
  publication-title: Lake and Reservoir Management
– volume: 296
  start-page: 1
  year: 2004
  end-page: 22
  article-title: Development and validation of a global database of lakes, reservoirs and wetlands
  publication-title: Journal of Hydrology
– volume: 289
  start-page: 284
  issue: 5477
  year: 2000b
  end-page: 288
  article-title: Global Water Resources: Vulnerability from Climate Change and Population Growth
  publication-title: Science
– volume: 35
  start-page: 688
  year: 2009
  end-page: 696
  article-title: Coding of watershed and river hierarchy to support GIS‐based hydrological analyses at different scales
  publication-title: Computers and Geosciences
– volume: 4
  start-page: 4389
  year: 2007
  end-page: 4414
  article-title: A variable streamflow velocity method for global river routing model: model description and preliminary results
  publication-title: Hydrology and Earth System Sciences Discussions
– volume: 23
  start-page: 1221
  year: 2009
  end-page: 1235
  article-title: Simulating hydrologic and hydraulic processes throughout the Amazon River Basin
  publication-title: Hydrological Processes
– year: 2010
– volume: 12
  start-page: 869
  year: 2011
  end-page: 884
  article-title: Multimodel Estimate of the Global Terrestrial Water Balance: Setup and First Results
  publication-title: Journal of Hydrometeorology
– volume: 406
  start-page: 170
  year: 2011
  end-page: 181
  article-title: Large scale hydrologic and hydrodynamic modelling using limited data and a GIS based approach
  publication-title: Journal of Hydrology
– volume: 14
  start-page: 1
  year: 2010
  end-page: 24
  article-title: Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network‐Hydrology (GTN‐H)
  publication-title: Hydrology and Earth System Sciences
– volume: 329
  start-page: 553
  year: 2006
  end-page: 567
  article-title: European hydraulic geometries for continental scale environmental modelling
  publication-title: Journal of Hydrology
– volume: 384
  start-page: 232
  year: 2010
  end-page: 244
  article-title: An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model
  publication-title: Journal of Hydrology
– year: 2002
– volume: 606
  start-page: 560
  year: 1997
  end-page: 576
– volume: 25
  start-page: 837
  year: 2010
  end-page: 853
  article-title: Global Nutrient Export from WaterSheds 2 (NEWS 2): Model development and implementation
  publication-title: Environmental Modelling and Software
– volume: 17
  start-page: 2685
  year: 2003
  end-page: 2689
  article-title: What is hydrologic connectivity and why is it ecologically important?
  publication-title: Hydrological Processes
– volume: 35
  start-page: 583
  year: 1999
  end-page: 587
  article-title: Five‐Minute, 1/2°, and 1° Data Sets of Continental Watersheds and River Networks for Use in Regional and Global Hydrologic and Climate System Modeling Studies
  publication-title: Water Resources Research
– volume: 89
  start-page: 93
  year: 2008
  end-page: 104
  article-title: New global hydrography derived from spaceborne elevation data
  publication-title: EOS, Transactions of the American Geophysical Union
– year: 2009
– volume: 424–425
  start-page: 238
  year: 2012
  end-page: 251
  article-title: Modeling variable river flow velocity on continental scale: Current situation and climate change impacts in Europe
  publication-title: Journal of Hydrology
– volume: 119
  start-page: 141
  year: 1993
  end-page: 157
  article-title: Nonpoint‐Pollution Model Sensitivity to Grid‐Cell Size
  publication-title: Journal of Water Resources Planning and Management
– volume: 330
  start-page: 444
  year: 2006
  end-page: 456
  article-title: Application of isotope tracers in continental scale hydrological modeling
  publication-title: Journal of Hydrology
– volume: 93
  start-page: 91
  year: 2009
  end-page: 116
  article-title: Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes
  publication-title: Biogeochemistry
– volume: 384
  start-page: 198
  year: 2010
  end-page: 217
  article-title: Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation
  publication-title: Journal of Hydrology
– volume: 270
  start-page: 105
  year: 2003
  end-page: 134
  article-title: A global hydrological model for deriving water availability indicators: model tuning and validation
  publication-title: Journal of Hydrology
– volume: 38
  start-page: 838
  year: 2004
  end-page: 49
  article-title: Screening analysis of human pharmaceutical compounds in U.S. surface waters
  publication-title: Environmental Science and Technology
– volume: 22
  start-page: 1
  year: 2008
  end-page: 19
  article-title: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year
  publication-title: Global Biogeochemical Cycles
– volume: 115
  start-page: 1850
  year: 2011
  end-page: 1865
  article-title: Reconciling the global terrestrial water budget using satellite remote sensing
  publication-title: Remote Sensing of Environment
– volume: 2
  start-page: 681
  year: 2009
  end-page: 686
  article-title: Sinking deltas due to human activities
  publication-title: Nature Geoscience
– volume: 327
  start-page: 22
  year: 2006
  end-page: 41
  article-title: A reservoir operation scheme for global river routing models
  publication-title: Journal of Hydrology
– volume: 13
  start-page: 686
  year: 2000
  end-page: 704
  article-title: Modeling terrestrial hydrological systems at the continental scale: Testing the accuracy of an atmospheric GCM
  publication-title: Journal of Climate
– volume: 90
  start-page: 3410
  year: 2009
  end-page: 21
  article-title: A GIS model‐based screening of potential contamination of soil and water by pyrethroids in Europe
  publication-title: Journal of Environmental Management
– volume: 3
  start-page: 241
  year: 1989
  end-page: 265
  article-title: Continental scale models of water balance and fluvial transport: an application to South America
  publication-title: Global Biogeochemical Cycles
– volume: 13
  start-page: 2241
  year: 2009
  end-page: 2251
  article-title: Deriving a global river network map and its sub‐grid topographic characteristics from a fine‐resolution flow direction map
  publication-title: Hydrology and Earth System Sciences
– volume: 3
  start-page: 14
  year: 2010
  end-page: 42
  article-title: Lost in development's shadow: The downstream human consequences of dams
  publication-title: Water Alternatives
– volume: 56
  start-page: 591
  year: 2010
  end-page: 597
  article-title: Linking scales in stream ecology
  publication-title: BioScience
– volume: 59
  start-page: 299
  year: 2000
  end-page: 319
  article-title: Integrated geographical assessment of environmental condition in water catchments: Linking landscape ecology, environmental modelling and GIS
  publication-title: Journal of Environmental Management
– volume: 9
  start-page: 53
  year: 2011
  end-page: 60
  article-title: Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere
  publication-title: Frontiers in Ecology and the Environment
– volume: 12
  start-page: 913
  year: 2011
  end-page: 934
  article-title: River Network Routing on the NHDPlus Dataset
  publication-title: Journal of Hydrometeorology
– volume: 30
  start-page: 663
  year: 1994
  end-page: 671
  article-title: Downstream channel geometry for use in planning‐level models
  publication-title: Water Resources Bulletin
– volume: 48
  start-page: 317
  year: 2003
  end-page: 337
  article-title: Development and testing of the WaterGAP 2 global model of water use and availability
  publication-title: Hydrological Sciences Journal
– volume: 369
  start-page: 165
  year: 2009
  end-page: 174
  article-title: The influence of historical and potential future deforestation on the stream flow of the Amazon River ‐ Land surface processes and atmospheric feedbacks
  publication-title: Journal of Hydrology
– volume: 30
  start-page: 492
  year: 2002
  end-page: 507
  article-title: Basic principles and consequences of altered hydrological regimes for aquatic biodiversity
  publication-title: Environmental Management
– volume: 6
  start-page: 439
  year: 2008
  end-page: 447
  article-title: Putting people in the map: anthropogenic biomes of the world
  publication-title: Frontiers in Ecology and the Environment
– volume: 44
  start-page: 1
  year: 2008
  end-page: 17
  article-title: Agricultural green and blue water consumption and its influence on the global water system
  publication-title: Water Resources Research
– volume: 342
  start-page: 179
  year: 2010
  end-page: 188
  article-title: Global land water storage change from GRACE over 2002–2009; Inference on sea level
  publication-title: Comptes Rendus Geoscience
– volume: 37
  start-page: 130
  year: 1980
  end-page: 137
  article-title: The river continuum concept
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– year: 2003
– volume: 20
  start-page: 73
  year: 2011
  end-page: 86
  article-title: The HYDE 3.1 spatially explicit database of human‐induced global land‐use change over the past 12,000 years
  publication-title: Global Ecology and Biogeography
– year: 2000
– volume: 16
  start-page: 83
  year: 2000
  end-page: 89
  article-title: Effects of river fragmentation on plant dispersal and riparian flora
  publication-title: Regulated Rivers: Research & Management
– year: 2012
– volume: 9
  start-page: 494
  year: 2011
  end-page: 502
  article-title: High‐resolution mapping of the world's reservoirs and dams for sustainable river‐flow management
  publication-title: Frontiers in Ecology and the Environment
– volume: 467
  start-page: 555
  year: 2010
  end-page: 561
  article-title: Global threats to human water security and river biodiversity
  publication-title: Nature
– volume: 10
  start-page: 219
  year: 2006
  end-page: 237
  article-title: Integrating Arc Hydro Features with a Schematic Network
  publication-title: Transactions in GIS
– volume: 258
  start-page: 214
  year: 2002
  end-page: 231
  article-title: Validation of a new global 30‐min drainage direction map
  publication-title: Journal of Hydrology
– volume: 218
  start-page: 1
  year: 1999
  end-page: 12
  article-title: A topological system for delineation and codification of the Earth's river basins
  publication-title: Journal of Hydrology
– volume: 24
  start-page: 101
  year: 2009
  end-page: 113
  article-title: A new measure of longitudinal connectivity for stream networks
  publication-title: Landscape Ecology
– volume: 24
  start-page: 1206
  year: 2008
  end-page: 1217
  article-title: Effects of residence time on summer nitrate uptake in mississippi river flow‐regulated backwaters
  publication-title: River Research and Applications
– volume: 23
  start-page: 1
  year: 2009
  end-page: 13
  article-title: Global patterns of dissolved silica export to the coastal zone: Results from a spatially explicit global model
  publication-title: Global Biogeochemical Cycles
– volume: 13
  start-page: 997
  year: 1999
  end-page: 1027
  article-title: Estimating historical changes in global land cover: Croplands from 1700 to 1992
  publication-title: Global Biogeochemical Cycles
– volume: 35
  year: 2008
  article-title: Global irrigation water demand: Variability and uncertainties arising from agricultural and climate data sets
  publication-title: Geophysical Research Letters
– volume: 24
  start-page: GB1011
  year: 2010
  article-title: MIRCA2000 – Global monthly irrigated and rainfed crop areas around the year 2000: A new high‐resolution data set for agricultural and hydrological modeling
  publication-title: Global Biogeochemical Cycles
– volume: 112
  start-page: 1
  year: 2007
  end-page: 13
  article-title: Global inundation dynamics inferred from multiple satellite observations, 1993–2000
  publication-title: Journal of Geophysical Research
– volume: 32
  start-page: 3449
  year: 1998
  end-page: 3456
  article-title: Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: Rapid photodegradation in a lake
  publication-title: Environmental Science and Technology
– start-page: 407
  year: 2010
  end-page: 414
– volume: 237
  start-page: 17
  year: 2000a
  end-page: 39
  article-title: Geomorphometric attributes of the global system of rivers at 30‐minute spatial resolution
  publication-title: Journal of Hydrology
– ident: e_1_2_9_26_1
  doi: 10.1016/S0022-1694(02)00283-4
– ident: e_1_2_9_28_1
  doi: 10.1029/2001GB001396
– ident: e_1_2_9_68_1
  doi: 10.1016/j.jenvman.2009.05.020
– ident: e_1_2_9_70_1
  doi: 10.1029/2008GB003435
– ident: e_1_2_9_36_1
  doi: 10.1007/978‐3‐642‐10228‐8_35
– ident: e_1_2_9_78_1
  doi: 10.1016/j.jhydrol.2011.08.004
– ident: e_1_2_9_41_1
  doi: 10.1029/1998WR900068
– volume-title: Handbook of Hydrology
  year: 1993
  ident: e_1_2_9_57_1
– ident: e_1_2_9_99_1
  doi: 10.5194/hess‐13‐2241‐2009
– ident: e_1_2_9_45_1
  doi: 10.1080/07438141.2010.504321
– ident: e_1_2_9_96_1
  doi: 10.1029/2008GLO35296
– ident: e_1_2_9_8_1
  doi: 10.1002/(SICI)1099-1646(200001/02)16:1<83::AID-RRR567>3.0.CO;2-T
– ident: e_1_2_9_39_1
  doi: 10.1016/j.jhydrol.2009.02.007
– ident: e_1_2_9_95_1
  doi: 10.1111/j.1467‐9671.2006.00254.x
– volume-title: Network flows: theory, algorithms and applications
  year: 1993
  ident: e_1_2_9_2_1
– ident: e_1_2_9_65_1
  doi: 10.1175/1087‐3562(1998)002<0001:DOTRIP>2.3.CO;2
– ident: e_1_2_9_98_1
  doi: 10.1029/2010WR010090
– ident: e_1_2_9_91_1
  doi: 10.1126/science.289.5477.284
– ident: e_1_2_9_13_1
  doi: 10.1002/hyp.7252
– ident: e_1_2_9_76_1
  doi: 10.1029/2007WR006331
– ident: e_1_2_9_17_1
  doi: 10.1021/es980301x
– ident: e_1_2_9_84_1
  doi: 10.1139/f80-017
– ident: e_1_2_9_21_1
  doi: 10.1175/1520-0442(2000)013<0686:MTHSAT>2.0.CO;2
– ident: e_1_2_9_24_1
  doi: 10.1175/2011JHM1345.1
– ident: e_1_2_9_87_1
  doi: 10.1061/(ASCE)0733‐9496(1993)119:2(141
– ident: e_1_2_9_79_1
  doi: http://dx.doi.org/10.1016/j.asr.2012.11.002
– ident: e_1_2_9_31_1
– ident: e_1_2_9_90_1
  doi: 10.1016/S0022-1694(00)00282-1
– ident: e_1_2_9_35_1
  doi: 10.1016/j.jhydrol.2006.04.029
– ident: e_1_2_9_9_1
  doi: 10.1016/j.gloenvcha.2003.10.004
– ident: e_1_2_9_62_1
– ident: e_1_2_9_29_1
  doi: 10.1890/070062
– ident: e_1_2_9_47_1
  doi: 10.1111/j.1466‐8238.2010.00587.x
– ident: e_1_2_9_73_1
  doi: 10.1029/1999GB900046
– ident: e_1_2_9_59_1
  doi: 10.1016/j.envsoft.2010.01.007
– ident: e_1_2_9_66_1
  doi: 10.1016/j.jhydrol.2011.06.007
– ident: e_1_2_9_71_1
  doi: 10.1029/2006JD007847
– start-page: 560
  volume-title: Surface water‐quality modeling
  year: 1997
  ident: e_1_2_9_19_1
– ident: e_1_2_9_42_1
  doi: 10.1175/2011JHM1324.1
– ident: e_1_2_9_94_1
  doi: 10.1068/b2624
– ident: e_1_2_9_48_1
  doi: 10.1016/j.geomorph.2010.03.018
– volume: 60
  start-page: 1663
  year: 1988
  ident: e_1_2_9_18_1
  article-title: Lake response modeling using available biologically phosphorus
  publication-title: Journal of the Water Pollution Control Federation
– volume: 37
  start-page: 1955
  year: 2001
  ident: e_1_2_9_34_1
  article-title: Scaling gridded river networks for macroscale hydrology: Development, analysis, and control of error
  publication-title: Water Resources
  doi: 10.1029/2001WR900024
– ident: e_1_2_9_7_1
  doi: 10.1021/es034430b
– ident: e_1_2_9_3_1
  doi: 10.1623/hysj.48.3.317.45290
– ident: e_1_2_9_22_1
  doi: 10.1016/j.jhydrol.2009.02.043
– ident: e_1_2_9_85_1
  doi: 10.1016/S0022‐1694(99)00011‐6
– ident: e_1_2_9_5_1
  doi: 10.1111/j.1752-1688.1994.tb03321.x
– ident: e_1_2_9_77_1
  doi: 10.1016/j.rse.2011.03.009
– ident: e_1_2_9_92_1
  doi: 10.1016/S0921‐8181(03)00023‐7
– ident: e_1_2_9_69_1
  doi: 10.1016/j.scitotenv.2009.10.046
– volume-title: Harmonized World Soil Database (version 1.2)
  year: 2012
  ident: e_1_2_9_32_1
– ident: e_1_2_9_15_1
– ident: e_1_2_9_23_1
  doi: 10.1007/s10980-008-9283-y
– ident: e_1_2_9_43_1
  doi: 10.1016/j.jhydrol.2005.11.011
– ident: e_1_2_9_44_1
  doi: 10.1016/j.jhydrol.2009.09.028
– ident: e_1_2_9_38_1
  doi: 10.1890/1540‐9295(2005)003[0138:AGAFDS]2.0.CO;2
– ident: e_1_2_9_101_1
  doi: 10.1016/j.jhydrol.2012.02.045
– ident: e_1_2_9_50_1
  doi: 10.1016/j.jhydrol.2004.03.028
– ident: e_1_2_9_93_1
  doi: 10.1038/nature09549
– ident: e_1_2_9_25_1
  doi: 10.1016/S0022‐1694(01)00565‐0
– ident: e_1_2_9_88_1
– ident: e_1_2_9_51_1
  doi: 10.1029/2008EO100001
– ident: e_1_2_9_54_1
  doi: 10.1080/014311600210191
– ident: e_1_2_9_37_1
  doi: 10.1016/j.cageo.2008.04.007
– volume: 3
  start-page: 14
  year: 2010
  ident: e_1_2_9_75_1
  article-title: Lost in development's shadow: The downstream human consequences of dams
  publication-title: Water Alternatives
– volume-title: Hydropower Project Database
  year: 2009
  ident: e_1_2_9_61_1
– ident: e_1_2_9_97_1
  doi: 10.5194/hess-14-1-2010
– ident: e_1_2_9_100_1
  doi: 10.1029/2010WR009726
– ident: e_1_2_9_86_1
  doi: 10.1016/j.jhydrol.2012.01.005
– ident: e_1_2_9_72_1
  doi: 10.1002/hyp.5145
– ident: e_1_2_9_6_1
  doi: 10.1899/09‐073.1
– ident: e_1_2_9_16_1
  doi: 10.1007/s00267-002-2737-0
– ident: e_1_2_9_64_1
  doi: 10.1126/science.1128845
– ident: e_1_2_9_30_1
– ident: e_1_2_9_10_1
  doi: 10.1006/jema.2000.0372
– ident: e_1_2_9_74_1
  doi: 10.1016/S0022‐1694(00)00178‐5
– ident: e_1_2_9_63_1
  doi: 10.5194/hessd‐4‐4389‐2007
– ident: e_1_2_9_12_1
  doi: 10.1890/100014
– ident: e_1_2_9_14_1
  doi: 10.1029/2008GB003281
– ident: e_1_2_9_11_1
– ident: e_1_2_9_40_1
  doi: 10.1002/hyp.7795
– ident: e_1_2_9_52_1
  doi: 10.1890/100125
– ident: e_1_2_9_46_1
  doi: 10.1002/rra.1150
– ident: e_1_2_9_60_1
  doi: 10.1029/2007GB002947
– ident: e_1_2_9_27_1
  doi: 10.5194/hess-13-2413-2009
– ident: e_1_2_9_67_1
  doi: 10.1016/j.jhydrol.2006.03.009
– ident: e_1_2_9_56_1
  doi: 10.1073/pnas.1010808108
– ident: e_1_2_9_80_1
  doi: 10.1016/j.jhydrol.2009.07.031
– ident: e_1_2_9_81_1
  doi: 10.5194/hess-9-535-2005
– ident: e_1_2_9_49_1
  doi: 10.1111/j.1365‐2427.2008.02135.x
– ident: e_1_2_9_4_1
  doi: 10.1007/s10533‐008‐9274‐8
– ident: e_1_2_9_53_1
  doi: 10.1016/j.crte.2009.12.004
– volume-title: Arc Hydro: GIS for water resources
  year: 2002
  ident: e_1_2_9_58_1
– ident: e_1_2_9_55_1
  doi: 10.1641/0006‐3568(2006)56[591:LSISE]2.0.CO;2
– ident: e_1_2_9_83_1
– ident: e_1_2_9_33_1
  doi: 10.1016/S0304‐3894(98)00108‐3
– ident: e_1_2_9_82_1
  doi: 10.1038/ngeo629
– ident: e_1_2_9_89_1
  doi: 10.1029/GB003i003p00241
– ident: e_1_2_9_20_1
  doi: 10.1007/BF02592101
SSID ssj0004080
Score 2.623898
Snippet Despite significant recent advancements, global hydrological models and their input databases still show limited capabilities in supporting many spatially...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 2171
SubjectTerms Geographic Information Systems
global hydrography
hydrological connectivity
large-scale hydrological modeling
river network routing
Title Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems
URI https://api.istex.fr/ark:/67375/WNG-VR13B1FR-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.9740
Volume 27
WOSCitedRecordID wos000325218100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1085
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004080
  issn: 0885-6087
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7SCnrxLb6JIPYU3U02-_Dmq3oopRTr47RsNwkVZSu79dF_byabbSkoCJ72sJPdMJNJZsI33yB0JFwm_FAEJE2UQzxJXaK9yCGhnzJf58863zaFwq2g3Q4fH6OORVVCLUzJDzG5cAPPMPs1OHjSL06npKGD8duJDoZ1ul6netnyGqpfdZu91rQq0jF907QbceI7YVBRzzr0tBo7cxjVQa9fs0GqOWWay_-Z3wpasrElPi8Xwyqak9kaWrBtzgfjdfRZMvzjHMAYeDAWuX2Fk0zgrESE43z4DljoMwwnHMwDA4zUinziioVcFng0xIaeFusoEhvu1UaBXwFbbn9R8kQXG6jXvL67vCW28wJJdDjnkCRxacqh5lW6kSf6AU8V5cIJJQWbJkx5OvKRVApfJ0RRyiKWKun1FfWE1Fs520S1bJjJLYRFpPQAGnnQ0UMK1XcZV77OSgMqFOdsGzUqE8SppSWH7hivcUmoTGOtyBgUuY0OJ5JvJRXHDzLHxooTgSR_AehawOOH9k1833XZhdvsxp4WNMb79Uvx7VMHnjt_FdxFi9S0ygiIy_dQbZS_y300n36Mnov8wC7ObyQG6vk
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELcQnQQvgw0Q3_MkBE-GxI7zMZ42ttJppUIVn09WGtvqBEqrtIX1v-fOSYqQmITEUx5yTqz78N1Zd78jZE_7QoexjliWWo8FhvsMrMhjcZiJEPJnyLddo3A76nTim5vkfI4c170wJT7E7MINLcOd12jgeCF99Iwa2p8ODyEahny9EYAWgXo3fnabl-3ntkjPDU4DO5Is9OKoxp71-FG99oU3aiBj_72MUp2baS69a4PL5GMVXdLvpTp8InMm_0wWqkHn_ekKeSwx_mmB5Ri0P9VF9YqmuaZ5WRNOi8EEq6G_UfRxuBGKhaQVySOtccjNiI4H1AHUUogjqUNfPRjRe6wur35RIkWPVsll89fFSYtVsxdYCgGdx9LU55nErlfjJ4HuRTKzXGovNhylmgobQOxjuNEhpERJJhKRWRP0LA-0gcNcrJH5fJCbdUJ1YmEBTwKc6WG07flC2hDy0ohrK6XYIAe1DFRWAZPjfIx7VUIqcwWMVMjIDfJ1RjkswTheodl3YpwRpMUdFq9FUl13TtVV1xc__GZXBUDopPffL6nW7Tk-N99K-IUstC7O2qr9u_NniyxyNzgjYr7cJvPjYmJ2yIfsYfx3VOxWmvoELg_u6Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-hFg1eNjaYVgbMk6bxZEjsOB_sicEyplVVVY2vJyuNbRWB0iptx_rfz-ckRUhDQtpTHnJOrDuffWfd_X4An5TPVRiriOaZ8WigmU-tF3k0DnMe2vzZ5tuuUbgb9Xrx1VXSX4EvTS9MhQ-xvHBDz3D7NTq4nihz-IAaOlpMDmw0bPP1doAcMi1onw7S8-5DW6TniNOsHwkaenHUYM967LAZ--g0aqNi_zyOUt0xk776rwluwMs6uiTH1XJ4DSu6eANrNdH5aLEJ9xXGPymxHIOMFqqsX5GsUKSoasJJOZ5jNfQRwTMOJ0KwkLQWuScNDrmektmYOIBaYuNI4tBX96fkDqvL619USNHTLThPv_06OaM19wLNbEDn0SzzWS6w61X7SaCGkcgNE8qLNUOrZtwENvbRTKvQpkRJzhOeGx0MDQuUtps5fwutYlzod0BUYuwAlgTI6aGVGfpcmNDmpRFTRgjegf3GBjKvgcmRH-NOVpDKTFpFSlRkBz4uJScVGMc_ZD47My4FsvIWi9ciIS973-XFwOdf_XQgAyvorPfkl-TZdR-f288V_AAv-qep7P7o_XwP68zxZkTUFzvQmpVzvQur-e_ZzbTcqxfqX9Nx7mQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+river+hydrography+and+network+routing%3A+baseline+data+and+new+approaches+to+study+the+world%27s+large+river+systems&rft.jtitle=Hydrological+processes&rft.au=Lehner%2C+Bernhard&rft.au=Grill%2C+G%C3%BCnther&rft.date=2013-07-15&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0885-6087&rft.eissn=1099-1085&rft.volume=27&rft.issue=15&rft.spage=2171&rft.epage=2186&rft_id=info:doi/10.1002%2Fhyp.9740&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_VR13B1FR_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon