Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems
Despite significant recent advancements, global hydrological models and their input databases still show limited capabilities in supporting many spatially detailed research questions and integrated assessments, such as required in freshwater ecology or applied water resources management. In order to...
Uloženo v:
| Vydáno v: | Hydrological processes Ročník 27; číslo 15; s. 2171 - 2186 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Blackwell Publishing Ltd
15.07.2013
|
| Témata: | |
| ISSN: | 0885-6087, 1099-1085 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Despite significant recent advancements, global hydrological models and their input databases still show limited capabilities in supporting many spatially detailed research questions and integrated assessments, such as required in freshwater ecology or applied water resources management. In order to address these challenges, the scientific community needs to create improved large‐scale datasets and more flexible data structures that enable the integration of information across and within spatial scales; develop new and advanced models that support the assessment of longitudinal and lateral hydrological connectivity; and provide an accessible modeling environment for researchers, decision makers, and practitioners. As a contribution, we here present a new modeling framework that integrates hydrographic baseline data at a global scale (enhanced HydroSHEDS layers and coupled datasets) with new modeling tools, specifically a river network routing model (HydroROUT) that is currently under development. The resulting ‘hydro‐spatial fabric’ is designed to provide an avenue for advanced hydro‐ecological applications at large scales in a consistent and highly versatile way. Preliminary results from case studies to assess human impacts on water quality and the effects of dams on river fragmentation and downstream flow regulation illustrate the potential of this combined data‐and‐modeling framework to conduct novel research in the fields of aquatic ecology, biogeochemistry, geo‐statistical modeling, or pollution and health risk assessments. The global scale outcomes are at a previously unachieved spatial resolution of 500 m and can thus support local planning and decision making in many of the world's large river basins. Copyright © 2013 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | Despite significant recent advancements, global hydrological models and their input databases still show limited capabilities in supporting many spatially detailed research questions and integrated assessments, such as required in freshwater ecology or applied water resources management. In order to address these challenges, the scientific community needs to create improved large‐scale datasets and more flexible data structures that enable the integration of information across and within spatial scales; develop new and advanced models that support the assessment of longitudinal and lateral hydrological connectivity; and provide an accessible modeling environment for researchers, decision makers, and practitioners. As a contribution, we here present a new modeling framework that integrates hydrographic baseline data at a global scale (enhanced HydroSHEDS layers and coupled datasets) with new modeling tools, specifically a river network routing model (HydroROUT) that is currently under development. The resulting ‘hydro‐spatial fabric’ is designed to provide an avenue for advanced hydro‐ecological applications at large scales in a consistent and highly versatile way. Preliminary results from case studies to assess human impacts on water quality and the effects of dams on river fragmentation and downstream flow regulation illustrate the potential of this combined data‐and‐modeling framework to conduct novel research in the fields of aquatic ecology, biogeochemistry, geo‐statistical modeling, or pollution and health risk assessments. The global scale outcomes are at a previously unachieved spatial resolution of 500 m and can thus support local planning and decision making in many of the world's large river basins. Copyright © 2013 John Wiley & Sons, Ltd. |
| Author | Lehner, Bernhard Grill, Günther |
| Author_xml | – sequence: 1 givenname: Bernhard surname: Lehner fullname: Lehner, Bernhard email: Correspondence to: Bernhard Lehner, Department of Geography, McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 0B9, Canada., bernhard.lehner@mcgill.ca organization: Department of Geography, McGill University, 805 Sherbrooke Street West, QC, H3A 0B9, Montreal, Canada – sequence: 2 givenname: Günther surname: Grill fullname: Grill, Günther organization: Department of Geography, McGill University, 805 Sherbrooke Street West, QC, H3A 0B9, Montreal, Canada |
| BookMark | eNp1kEtLxDAURoMoOD7An5Cdbjre9F13KjoKoiI-cBXuJLfTaG1KEh377x1xEBRd3c0534WzwVY72xFjOwLGAiDeb4Z-XBUprLCRgKqKBJTZKhtBWWZRDmWxzja8fwKAFEoYsfmktVNsuTNv5HgzaGdnDvtm4Nhp3lGYW_fMnX0Nppsd8Cl6ak1HXGPAJTLn2PfOomrI82C5D6964KEhvnBbvet5i25Gyxd-8IFe_BZbq7H1tL28m-zu9OT2-Cy6uJqcHx9eRJjEOUSIIlZZleWCRJXqaZGpOs40lBQrrAGTOs1FQTHpPI_zSiVVompKp3WcaiJUySbb-9pVznrvqJa9My_oBilAfgaTi2DyM9gCHf9ClQkYjO2CQ9P-JURfwty0NPw7LM8er3_yZpHg_ZtH9yzzIiky-XA5kfc3IjkSpzcyTT4AtxGQnQ |
| CitedBy_id | crossref_primary_10_1038_s41467_020_15064_8 crossref_primary_10_1007_s41748_024_00464_3 crossref_primary_10_14321_aehm_024_02_10 crossref_primary_10_1002_ieam_1793 crossref_primary_10_1016_j_watres_2023_120567 crossref_primary_10_1080_07900627_2019_1572497 crossref_primary_10_5194_essd_10_765_2018 crossref_primary_10_1016_j_jhydrol_2024_130960 crossref_primary_10_1016_j_ecoser_2024_101670 crossref_primary_10_1016_j_envsoft_2025_106558 crossref_primary_10_1002_vzj2_20305 crossref_primary_10_1038_s41598_024_75166_x crossref_primary_10_1038_s43247_021_00331_3 crossref_primary_10_1029_2019GL082027 crossref_primary_10_5194_hess_26_3785_2022 crossref_primary_10_5194_cp_21_753_2025 crossref_primary_10_1007_s10113_024_02331_3 crossref_primary_10_1038_s41597_024_04023_3 crossref_primary_10_3389_fenvs_2020_00026 crossref_primary_10_1029_2020JG005799 crossref_primary_10_1088_1748_9326_10_1_015001 crossref_primary_10_1016_j_earscirev_2024_104791 crossref_primary_10_5194_essd_16_1151_2024 crossref_primary_10_26599_OCEAN_2025_9470004 crossref_primary_10_1109_JSTARS_2024_3435363 crossref_primary_10_1016_j_envsoft_2019_104501 crossref_primary_10_1016_j_scitotenv_2018_12_155 crossref_primary_10_1029_2022GL098183 crossref_primary_10_1111_1365_2656_13795 crossref_primary_10_1002_joc_8748 crossref_primary_10_1007_s10113_020_01743_1 crossref_primary_10_1016_j_gloenvcha_2018_02_011 crossref_primary_10_1038_s41467_022_28077_2 crossref_primary_10_1029_2019EF001274 crossref_primary_10_1061_JHYEFF_HEENG_5833 crossref_primary_10_3389_fenvs_2022_788248 crossref_primary_10_3389_fevo_2020_599881 crossref_primary_10_1111_gcb_15961 crossref_primary_10_1038_s41598_021_89564_y crossref_primary_10_1002_ail2_88 crossref_primary_10_1016_j_chemgeo_2024_122106 crossref_primary_10_5194_hess_27_3911_2023 crossref_primary_10_1016_j_jhydrol_2023_129431 crossref_primary_10_1111_cobi_13466 crossref_primary_10_3390_fishes8100481 crossref_primary_10_1016_j_jenvman_2024_122809 crossref_primary_10_1002_joc_70078 crossref_primary_10_1029_2023GL107956 crossref_primary_10_1088_1748_9326_abb2c7 crossref_primary_10_1111_ddi_13714 crossref_primary_10_1080_02626667_2018_1473871 crossref_primary_10_1016_j_jhydrol_2025_133297 crossref_primary_10_1007_s10528_025_11156_6 crossref_primary_10_1111_csp2_13193 crossref_primary_10_1590_1676_0611_bn_2024_1732 crossref_primary_10_1371_journal_pclm_0000239 crossref_primary_10_1088_1748_9326_aad8e9 crossref_primary_10_1002_aqc_70200 crossref_primary_10_1016_j_ecoinf_2022_101890 crossref_primary_10_1038_s44221_023_00030_7 crossref_primary_10_1016_j_scitotenv_2019_134103 crossref_primary_10_11922_11_6035_noda_2022_0004_zh crossref_primary_10_1016_j_rser_2025_115723 crossref_primary_10_1016_j_geomorph_2021_107669 crossref_primary_10_1016_j_jag_2025_104826 crossref_primary_10_1111_nph_17675 crossref_primary_10_1016_j_indic_2025_100682 crossref_primary_10_5194_nhess_24_2577_2024 crossref_primary_10_1088_1748_9326_acdca7 crossref_primary_10_5194_hess_29_3277_2025 crossref_primary_10_3390_w15234111 crossref_primary_10_7717_peerj_16533 crossref_primary_10_1007_s12665_024_11455_y crossref_primary_10_1139_er_2022_0126 crossref_primary_10_1016_j_enggeo_2025_108229 crossref_primary_10_1029_2024JF007802 crossref_primary_10_1016_j_biocon_2019_108323 crossref_primary_10_1016_j_scitotenv_2018_11_348 crossref_primary_10_1038_s41586_024_08375_z crossref_primary_10_1111_fwb_13500 crossref_primary_10_35634_2412_9518_2025_35_2_220_232 crossref_primary_10_1002_hyp_15280 crossref_primary_10_1371_journal_pone_0191468 crossref_primary_10_1126_science_adf5848 crossref_primary_10_1016_j_envsoft_2024_106232 crossref_primary_10_1029_2024EF005652 crossref_primary_10_3389_feart_2023_1218823 crossref_primary_10_1038_s41597_020_0517_4 crossref_primary_10_1002_ldr_5319 crossref_primary_10_5194_hess_26_5555_2022 crossref_primary_10_1016_j_envpol_2023_123003 crossref_primary_10_1038_s41467_023_44679_w crossref_primary_10_5194_essd_13_2701_2021 crossref_primary_10_1016_j_jhydrol_2025_134164 crossref_primary_10_1016_j_watres_2025_124048 crossref_primary_10_1038_s41893_020_00665_4 crossref_primary_10_1016_j_scitotenv_2023_167370 crossref_primary_10_1111_ddi_12891 crossref_primary_10_1016_j_geomorph_2025_109708 crossref_primary_10_1016_j_scitotenv_2017_01_200 crossref_primary_10_1016_j_rse_2023_113657 crossref_primary_10_1177_0308518X15594901 crossref_primary_10_3233_SJI_220041 crossref_primary_10_1088_1748_9326_ad4e4b crossref_primary_10_1088_1755_1315_535_1_012007 crossref_primary_10_1016_j_jag_2024_103694 crossref_primary_10_5194_hess_26_1907_2022 crossref_primary_10_3389_fevo_2023_1165968 crossref_primary_10_3390_rs17132289 crossref_primary_10_1016_j_quageo_2022_101405 crossref_primary_10_5194_hess_26_3315_2022 crossref_primary_10_1029_2019EF001449 crossref_primary_10_1029_2023EF003510 crossref_primary_10_1186_s40623_025_02239_0 crossref_primary_10_1016_j_jhydrol_2022_128060 crossref_primary_10_1126_science_abo2812 crossref_primary_10_1007_s11629_020_6304_z crossref_primary_10_1029_2023WR036900 crossref_primary_10_1002_lob_10406 crossref_primary_10_1186_s40537_025_01208_4 crossref_primary_10_1016_j_scitotenv_2023_167367 crossref_primary_10_1029_2021WR030054 crossref_primary_10_1016_j_earscirev_2021_103682 crossref_primary_10_1080_23766808_2021_1967661 crossref_primary_10_1038_s43247_025_02653_y crossref_primary_10_1061_JWRMD5_WRENG_6778 crossref_primary_10_1111_1365_2664_12842 crossref_primary_10_1016_j_scitotenv_2025_179917 crossref_primary_10_3390_w16131902 crossref_primary_10_1016_j_ecolind_2025_113838 crossref_primary_10_1016_j_scitotenv_2021_149105 crossref_primary_10_1002_ieam_4631 crossref_primary_10_1016_j_envsoft_2025_106562 crossref_primary_10_3390_w17152256 crossref_primary_10_5194_essd_15_3483_2023 crossref_primary_10_1002_aqc_4163 crossref_primary_10_1038_s44221_024_00291_w crossref_primary_10_1002_aqc_3079 crossref_primary_10_1016_j_envpol_2017_07_041 crossref_primary_10_1016_j_iswcr_2025_09_004 crossref_primary_10_1016_j_ecoser_2025_101704 crossref_primary_10_1016_j_rse_2022_113378 crossref_primary_10_1111_fwb_13783 crossref_primary_10_1088_1748_9326_adea89 crossref_primary_10_1111_ddi_13530 crossref_primary_10_1002_pan3_10755 crossref_primary_10_1111_ddi_13776 crossref_primary_10_1002_wat2_1424 crossref_primary_10_1029_2024JG008141 crossref_primary_10_1080_01650521_2022_2085071 crossref_primary_10_1111_gcb_70506 crossref_primary_10_1029_2024WR038654 crossref_primary_10_7717_peerj_19432 crossref_primary_10_7717_peerj_19673 crossref_primary_10_1016_j_biocon_2022_109866 crossref_primary_10_1016_j_scitotenv_2024_170195 crossref_primary_10_1016_j_nbsj_2023_100104 crossref_primary_10_1016_j_ijpara_2025_08_001 crossref_primary_10_1029_2023WR036965 crossref_primary_10_5194_hess_23_3945_2019 crossref_primary_10_3390_atmos12091155 crossref_primary_10_1029_2023WR035882 crossref_primary_10_1016_j_marpolbul_2023_115382 crossref_primary_10_4000_archaeonautica_1860 crossref_primary_10_1007_s12145_023_01133_1 crossref_primary_10_1073_pnas_2407916122 crossref_primary_10_1016_j_biocon_2021_109335 crossref_primary_10_1016_j_jag_2025_104688 crossref_primary_10_1029_2024MS004737 crossref_primary_10_1016_j_ejrh_2025_102375 crossref_primary_10_1016_j_jdeveco_2024_103289 crossref_primary_10_5194_essd_14_4525_2022 crossref_primary_10_1016_j_agsy_2022_103586 crossref_primary_10_1002_aqc_3695 crossref_primary_10_1016_j_scitotenv_2023_163376 crossref_primary_10_1111_fwb_70100 crossref_primary_10_5194_hess_27_3505_2023 crossref_primary_10_1038_ncomms15347 crossref_primary_10_1088_1748_9326_aa7250 crossref_primary_10_1016_j_ecolind_2025_113648 crossref_primary_10_1111_ddi_13798 crossref_primary_10_1016_j_watres_2019_114884 crossref_primary_10_1016_j_jenvman_2023_118667 crossref_primary_10_1016_j_ecolind_2022_108697 crossref_primary_10_1088_1748_9326_acec60 crossref_primary_10_1016_j_jhydrol_2024_131874 crossref_primary_10_1016_j_jhydrol_2024_130787 crossref_primary_10_1016_j_envsoft_2021_105168 crossref_primary_10_3390_rs8050386 crossref_primary_10_1038_s42003_025_07891_6 crossref_primary_10_1016_j_scitotenv_2022_157203 crossref_primary_10_5194_essd_14_559_2022 crossref_primary_10_3390_rs14051259 crossref_primary_10_1016_j_biocon_2024_110843 crossref_primary_10_1002_joc_6181 crossref_primary_10_5194_essd_17_461_2025 crossref_primary_10_1016_j_quascirev_2025_109310 crossref_primary_10_1016_j_biocon_2021_109359 crossref_primary_10_1111_cla_12542 crossref_primary_10_1029_2020WR028658 crossref_primary_10_5194_essd_15_4389_2023 crossref_primary_10_1016_j_ejrh_2025_102595 crossref_primary_10_1016_j_jglr_2024_102325 crossref_primary_10_1016_j_scitotenv_2019_04_054 crossref_primary_10_1038_s41598_024_58401_3 crossref_primary_10_1007_s10113_017_1129_1 crossref_primary_10_1016_j_scitotenv_2025_180038 crossref_primary_10_1016_j_watbs_2025_100380 crossref_primary_10_1038_s41586_021_03565_5 crossref_primary_10_3389_feart_2020_559175 crossref_primary_10_1088_1748_9326_adfd75 crossref_primary_10_1111_1752_1688_70029 crossref_primary_10_1038_s41597_023_02875_9 crossref_primary_10_1007_s11069_025_07518_3 crossref_primary_10_1016_j_jag_2024_104132 crossref_primary_10_1016_j_jhydrol_2023_129097 crossref_primary_10_1051_kmae_2025002 crossref_primary_10_1016_j_scitotenv_2021_146688 crossref_primary_10_1111_geb_13519 crossref_primary_10_1080_07900627_2024_2449227 crossref_primary_10_5194_hess_29_1395_2025 crossref_primary_10_1016_j_dib_2022_107821 crossref_primary_10_1029_2024WR037519 crossref_primary_10_1111_jbi_13941 crossref_primary_10_1007_s00376_021_1085_z crossref_primary_10_1007_s11160_025_09998_9 crossref_primary_10_1016_j_mex_2025_103153 crossref_primary_10_1029_2020GL088543 crossref_primary_10_1038_s41597_023_02285_x crossref_primary_10_1016_j_jhazmat_2024_134225 crossref_primary_10_3389_fenvs_2021_671715 crossref_primary_10_1016_j_resconrec_2024_107892 crossref_primary_10_2744_CCB_1505_1 crossref_primary_10_1016_j_scitotenv_2019_05_065 crossref_primary_10_1016_j_envres_2023_115573 crossref_primary_10_1175_JHM_D_16_0050_1 crossref_primary_10_1016_j_quascirev_2025_109373 crossref_primary_10_1038_s41558_018_0386_4 crossref_primary_10_1007_s12145_023_01177_3 crossref_primary_10_1038_s41586_019_1111_9 crossref_primary_10_1073_pnas_2418189122 crossref_primary_10_1029_2020WR027147 crossref_primary_10_1007_s11069_024_07022_0 crossref_primary_10_1007_s12517_020_05548_8 crossref_primary_10_1038_s41467_025_57054_8 crossref_primary_10_1016_j_jhydrol_2018_02_063 crossref_primary_10_1007_s11270_022_05968_0 crossref_primary_10_3390_w17162422 crossref_primary_10_1177_09596836241275010 crossref_primary_10_1111_csp2_70100 crossref_primary_10_1016_j_scitotenv_2023_165592 crossref_primary_10_5194_nhess_21_2921_2021 crossref_primary_10_5194_esurf_10_457_2022 crossref_primary_10_1007_s11069_024_06632_y crossref_primary_10_1016_j_jeem_2024_103047 crossref_primary_10_1038_s41597_023_02085_3 crossref_primary_10_1371_journal_pone_0162684 crossref_primary_10_1016_j_rse_2025_114859 crossref_primary_10_3390_su15129198 crossref_primary_10_1371_journal_pwat_0000101 crossref_primary_10_1016_j_sajb_2025_08_013 crossref_primary_10_1038_s41598_021_87633_w crossref_primary_10_1016_j_envint_2023_107868 crossref_primary_10_1029_2024WR038633 crossref_primary_10_1109_JSTARS_2025_3584770 crossref_primary_10_1016_j_envsoft_2021_105117 crossref_primary_10_1016_j_ecss_2025_109335 crossref_primary_10_1016_j_biocon_2025_111179 crossref_primary_10_5194_hess_25_5153_2021 crossref_primary_10_1029_2019WR025287 crossref_primary_10_3390_rs16132489 crossref_primary_10_1016_j_earscirev_2025_105042 crossref_primary_10_3390_w14050721 crossref_primary_10_1080_02626667_2020_1833013 crossref_primary_10_1016_j_earscirev_2025_105048 crossref_primary_10_1371_journal_pone_0209470 crossref_primary_10_1111_jfb_70108 crossref_primary_10_1016_j_rse_2018_12_007 crossref_primary_10_1111_fme_12572 crossref_primary_10_1016_j_envres_2025_122688 crossref_primary_10_1016_j_envsoft_2022_105406 crossref_primary_10_1038_s41893_020_0492_y crossref_primary_10_2166_wqrj_2017_019 crossref_primary_10_5194_essd_14_4017_2022 crossref_primary_10_1016_j_aeolia_2019_100561 crossref_primary_10_3389_frwa_2024_1394563 crossref_primary_10_1038_s41893_020_0559_9 crossref_primary_10_1007_s12665_025_12352_8 crossref_primary_10_1016_j_jhydrol_2024_131440 crossref_primary_10_1038_s41893_024_01375_x crossref_primary_10_1038_s41597_019_0243_y crossref_primary_10_5194_piahs_381_87_2019 crossref_primary_10_1007_s00382_020_05123_7 crossref_primary_10_1073_pnas_2414416122 crossref_primary_10_3389_ffgc_2021_692338 crossref_primary_10_1016_j_jhydrol_2022_128880 crossref_primary_10_1029_2021WR031753 crossref_primary_10_1029_2024WR039347 crossref_primary_10_1016_j_sedgeo_2016_01_022 crossref_primary_10_1038_s41558_021_01074_x crossref_primary_10_1002_wat2_1705 crossref_primary_10_1016_j_gecco_2016_05_007 crossref_primary_10_1088_1748_9326_abcf77 crossref_primary_10_1016_j_biocon_2023_110186 crossref_primary_10_1016_j_jhydrol_2020_125814 crossref_primary_10_1016_j_palaeo_2025_112810 crossref_primary_10_1016_j_wace_2024_100679 crossref_primary_10_1073_pnas_1912776117 crossref_primary_10_1371_journal_pone_0311412 crossref_primary_10_1111_jbi_15088 crossref_primary_10_1029_2019JD030248 crossref_primary_10_1146_annurev_fluid_030121_113138 crossref_primary_10_1088_1748_9326_ad52b0 crossref_primary_10_35634_2412_9518_2025_35_2_233_240 crossref_primary_10_1016_j_jenvman_2024_122335 crossref_primary_10_1002_ecs2_4616 crossref_primary_10_1111_ddi_13269 crossref_primary_10_1029_2021GB007161 crossref_primary_10_1002_ece3_71551 crossref_primary_10_1016_j_ecolind_2023_109996 crossref_primary_10_3390_biology14070796 crossref_primary_10_1029_2024WR039355 crossref_primary_10_1016_j_ejrh_2024_102150 crossref_primary_10_1007_s11069_024_06487_3 crossref_primary_10_1038_s41597_024_03078_6 crossref_primary_10_1515_geo_2022_0683 crossref_primary_10_1016_j_jas_2022_105655 crossref_primary_10_1029_2023WR036580 crossref_primary_10_1088_2976_601X_adacec crossref_primary_10_1029_2020JD033965 crossref_primary_10_1038_s41597_022_01649_z crossref_primary_10_3390_plants11202742 crossref_primary_10_1080_10572414_2021_1943406 crossref_primary_10_1371_journal_pone_0186653 crossref_primary_10_1016_j_isprsjprs_2022_05_007 crossref_primary_10_1007_s10661_023_11014_1 crossref_primary_10_5194_hess_29_3145_2025 crossref_primary_10_1080_13658816_2015_1072629 crossref_primary_10_1080_09397140_2021_1965071 crossref_primary_10_5194_bg_22_3279_2025 crossref_primary_10_1080_20964471_2024_2358615 crossref_primary_10_1038_s41467_024_49699_8 crossref_primary_10_1007_s10021_018_0255_z crossref_primary_10_1016_j_ijdrr_2025_105442 crossref_primary_10_1029_2022WR033340 crossref_primary_10_1016_j_ijhydene_2018_12_156 crossref_primary_10_1038_s41586_021_03262_3 crossref_primary_10_1002_aqc_3606 crossref_primary_10_1111_jbi_15065 crossref_primary_10_1016_j_gloplacha_2025_104841 crossref_primary_10_1016_j_soildyn_2024_108890 crossref_primary_10_1016_j_palaeo_2017_06_035 crossref_primary_10_1002_aqc_3604 crossref_primary_10_1051_kmae_2022003 crossref_primary_10_1111_syen_12528 crossref_primary_10_1016_j_jenvman_2022_116575 crossref_primary_10_5194_essd_15_847_2023 crossref_primary_10_1016_j_ecoinf_2024_102643 crossref_primary_10_1038_s43247_024_01530_4 crossref_primary_10_1038_s43247_024_01554_w crossref_primary_10_1016_j_polar_2021_100644 crossref_primary_10_1007_s10346_024_02306_9 crossref_primary_10_1080_07011784_2025_2514122 crossref_primary_10_1017_S0959270921000150 crossref_primary_10_1111_fwb_14150 crossref_primary_10_5194_hess_24_3835_2020 crossref_primary_10_1007_s10705_022_10232_2 crossref_primary_10_1016_j_geomorph_2021_108078 crossref_primary_10_1038_s41467_024_49555_9 crossref_primary_10_1371_journal_pone_0204149 crossref_primary_10_1007_s10750_019_04044_9 crossref_primary_10_1002_2016JC012276 crossref_primary_10_1038_s41597_021_00949_0 crossref_primary_10_1088_1748_9326_ad6a70 crossref_primary_10_1088_2753_3751_ad53cb crossref_primary_10_1111_jfr3_70001 crossref_primary_10_1111_gcb_15139 crossref_primary_10_3390_rs17010078 crossref_primary_10_1016_j_jhydrol_2024_132026 crossref_primary_10_1007_s11356_024_33507_3 crossref_primary_10_1016_j_watres_2018_08_053 crossref_primary_10_1029_2024JF008017 crossref_primary_10_1038_s43017_023_00397_x crossref_primary_10_1016_j_pecon_2024_10_002 crossref_primary_10_1088_1748_9326_acf602 crossref_primary_10_1111_1752_1688_13231 crossref_primary_10_1016_j_envres_2025_122373 crossref_primary_10_1016_j_scitotenv_2023_164317 crossref_primary_10_1016_j_scitotenv_2017_11_315 crossref_primary_10_3389_feart_2020_582060 crossref_primary_10_1016_j_jenvman_2025_124852 crossref_primary_10_1016_j_biocon_2024_110669 crossref_primary_10_3390_su151310657 crossref_primary_10_1016_j_ecolind_2025_113149 crossref_primary_10_3390_rs15184492 crossref_primary_10_1002_iis2_13167 crossref_primary_10_1016_j_envpol_2024_125153 crossref_primary_10_1016_j_scitotenv_2022_154696 crossref_primary_10_1029_2021WR031721 crossref_primary_10_1371_journal_pntd_0009385 crossref_primary_10_5194_nhess_20_625_2020 crossref_primary_10_1038_s41467_023_42384_2 crossref_primary_10_1007_s11069_022_05737_6 crossref_primary_10_1093_biolinnean_blac097 crossref_primary_10_1111_jfr3_13047 crossref_primary_10_3389_fmars_2024_1282286 crossref_primary_10_1007_s10531_024_02790_4 crossref_primary_10_3390_rs14236091 crossref_primary_10_1016_j_ympev_2024_108046 crossref_primary_10_1007_s11269_015_1115_7 crossref_primary_10_1088_3033_4942_adf571 crossref_primary_10_3390_rs16203881 crossref_primary_10_3390_en12071395 crossref_primary_10_3390_w11061146 crossref_primary_10_1371_journal_pone_0279924 crossref_primary_10_1002_wrcr_20552 crossref_primary_10_1111_cag_12893 crossref_primary_10_1016_j_scitotenv_2023_163689 crossref_primary_10_1016_j_gloplacha_2024_104527 crossref_primary_10_1080_00293652_2025_2510920 crossref_primary_10_3390_data9040058 crossref_primary_10_1016_j_envres_2025_121068 crossref_primary_10_1111_icad_12666 crossref_primary_10_1029_2020MS002434 crossref_primary_10_1016_j_gca_2020_09_007 crossref_primary_10_1002_hyp_13791 crossref_primary_10_1038_s41437_018_0074_1 crossref_primary_10_3390_d14100793 crossref_primary_10_1016_j_watres_2015_12_008 crossref_primary_10_1080_07011784_2019_1691943 crossref_primary_10_1038_s41558_025_02308_y crossref_primary_10_3390_w13141977 crossref_primary_10_7554_eLife_101080 crossref_primary_10_1029_2018WR023218 crossref_primary_10_3390_jmse12030438 crossref_primary_10_1111_1752_1688_13227 crossref_primary_10_1029_2022WR033148 crossref_primary_10_1139_facets_2020_0114 crossref_primary_10_1002_ieam_1801 crossref_primary_10_1038_s41467_025_58792_5 crossref_primary_10_1007_s40823_023_00091_0 crossref_primary_10_1016_j_jhydrol_2024_132491 crossref_primary_10_1029_2021GL093656 crossref_primary_10_1139_cjfas_2018_0284 crossref_primary_10_1016_j_jhydrol_2024_132490 crossref_primary_10_1139_cjz_2024_0173 crossref_primary_10_1038_s41597_025_05659_5 crossref_primary_10_1029_2022WR033153 crossref_primary_10_1029_2024GL113684 crossref_primary_10_1016_j_renene_2025_124290 crossref_primary_10_1016_j_jenvman_2024_123254 crossref_primary_10_3390_rs14184612 crossref_primary_10_1111_jfb_14727 crossref_primary_10_1073_pnas_1617218114 crossref_primary_10_1016_j_ecolind_2014_03_026 crossref_primary_10_1016_j_envint_2023_108371 crossref_primary_10_1016_j_jclepro_2025_146305 crossref_primary_10_1038_s41561_024_01476_4 crossref_primary_10_1029_2023JG007672 crossref_primary_10_1111_1752_1688_12585 crossref_primary_10_1088_1755_1315_704_1_012040 crossref_primary_10_1002_eco_1721 crossref_primary_10_1038_s41597_023_02474_8 crossref_primary_10_1016_j_catena_2023_107773 crossref_primary_10_5194_essd_16_3873_2024 crossref_primary_10_1016_j_cageo_2020_104485 crossref_primary_10_1002_aqc_2933 crossref_primary_10_5194_nhess_21_2829_2021 crossref_primary_10_1088_1748_9326_ada398 crossref_primary_10_1029_2022JF006873 crossref_primary_10_1371_journal_pone_0227437 crossref_primary_10_1111_brv_13142 crossref_primary_10_1080_13241583_2022_2141333 crossref_primary_10_1016_j_oneear_2022_08_012 crossref_primary_10_1080_07900627_2024_2448720 crossref_primary_10_1002_2017WR021765 crossref_primary_10_1016_j_jhydrol_2025_133429 crossref_primary_10_1038_ncomms13603 crossref_primary_10_3390_rs16162875 crossref_primary_10_1002_2016GL071844 crossref_primary_10_24057_2071_9388_2025_3737 crossref_primary_10_1002_rra_3958 crossref_primary_10_1155_2022_6600359 crossref_primary_10_1016_j_jhydrol_2023_129607 crossref_primary_10_1038_s41597_025_05087_5 crossref_primary_10_1080_02626667_2020_1720024 crossref_primary_10_1016_j_jhydrol_2018_08_074 crossref_primary_10_1016_j_watres_2024_122889 crossref_primary_10_1111_1365_2656_70079 crossref_primary_10_5194_esurf_8_87_2020 crossref_primary_10_1016_j_dendro_2022_126017 crossref_primary_10_1111_cobi_14036 crossref_primary_10_1016_j_scitotenv_2024_177004 crossref_primary_10_1080_00087041_2022_2097758 crossref_primary_10_1002_hyp_14846 crossref_primary_10_3390_s23104975 crossref_primary_10_1177_03091333211051939 crossref_primary_10_1016_j_ympev_2020_106755 crossref_primary_10_1029_2020GL089258 crossref_primary_10_1016_j_jenvman_2025_125084 crossref_primary_10_3390_hydrology10040076 crossref_primary_10_1016_j_jhydrol_2020_125878 crossref_primary_10_1016_j_isci_2024_111598 crossref_primary_10_1016_j_chemgeo_2020_119794 crossref_primary_10_5194_esd_16_29_2025 crossref_primary_10_3390_su13052805 crossref_primary_10_1021_acs_est_4c07345 crossref_primary_10_1109_TGRS_2022_3231552 crossref_primary_10_1029_2020EF001778 crossref_primary_10_3390_data10050078 crossref_primary_10_5194_hess_26_469_2022 crossref_primary_10_5194_hess_26_1801_2022 crossref_primary_10_1002_edn3_480 crossref_primary_10_1016_j_ijsrc_2024_03_001 crossref_primary_10_1088_1748_9326_adfcee crossref_primary_10_5194_hess_27_3293_2023 crossref_primary_10_1080_15481603_2024_2364461 crossref_primary_10_1016_j_watres_2020_116265 crossref_primary_10_1002_aff2_140 crossref_primary_10_1016_j_jhydrol_2025_133477 crossref_primary_10_1088_1748_9326_adcf39 crossref_primary_10_3390_rs12050745 crossref_primary_10_1002_aqc_2971 crossref_primary_10_1016_j_scitotenv_2015_09_100 crossref_primary_10_1038_s41558_022_01556_6 crossref_primary_10_1111_bor_12678 crossref_primary_10_3389_frwa_2025_1603004 crossref_primary_10_1002_esp_5347 crossref_primary_10_1016_j_ecolind_2023_110386 crossref_primary_10_1029_2023GB008092 crossref_primary_10_1016_j_scitotenv_2024_173950 crossref_primary_10_1016_j_epsl_2025_119226 crossref_primary_10_1038_s41893_022_00937_1 crossref_primary_10_5194_hess_22_2839_2018 crossref_primary_10_5194_esurf_12_581_2024 crossref_primary_10_1111_mec_17204 crossref_primary_10_1093_biolinnean_blab153 crossref_primary_10_1016_j_ecoinf_2015_12_005 crossref_primary_10_1016_j_jhazmat_2023_132455 crossref_primary_10_1029_2019WR025957 crossref_primary_10_1002_aqc_2965 crossref_primary_10_1002_aqc_3812 crossref_primary_10_26599_HYD_2023_9380002_V1 crossref_primary_10_1016_j_scitotenv_2022_153510 crossref_primary_10_1016_j_rse_2023_113724 crossref_primary_10_1002_aqc_70094 crossref_primary_10_3390_rs17091651 crossref_primary_10_5194_esurf_13_745_2025 crossref_primary_10_1007_s10750_025_05995_y crossref_primary_10_1080_02723646_2020_1762960 crossref_primary_10_1080_07011784_2020_1772116 crossref_primary_10_3390_rs14184461 crossref_primary_10_1016_j_catena_2022_106182 crossref_primary_10_1016_j_jhydrol_2025_134103 crossref_primary_10_1016_j_scitotenv_2023_162993 crossref_primary_10_1038_s41598_020_72499_1 crossref_primary_10_1002_qj_4622 crossref_primary_10_1016_j_jhazmat_2024_133839 crossref_primary_10_1016_j_geomorph_2024_109457 crossref_primary_10_1038_s41586_024_07964_2 crossref_primary_10_1038_s41598_023_32511_w crossref_primary_10_3390_w14182887 crossref_primary_10_1038_s41597_022_01614_w crossref_primary_10_1016_j_envint_2019_105260 crossref_primary_10_1016_j_envsci_2025_104089 crossref_primary_10_1016_j_pdisas_2020_100076 crossref_primary_10_1088_1748_9326_ad1cb5 crossref_primary_10_1038_s41467_021_22299_6 crossref_primary_10_1080_10572414_2022_2076518 crossref_primary_10_1111_csp2_12975 crossref_primary_10_1016_j_rse_2014_10_015 crossref_primary_10_3390_w16030448 crossref_primary_10_1038_s43247_025_02508_6 crossref_primary_10_1093_aobpla_plad009 crossref_primary_10_3389_frwa_2022_1061991 crossref_primary_10_3390_d14110982 crossref_primary_10_1016_j_renene_2021_04_109 crossref_primary_10_1038_s44221_025_00435_6 crossref_primary_10_1007_s11756_022_01289_z crossref_primary_10_3390_rs11212556 crossref_primary_10_1177_0309133318776462 crossref_primary_10_1111_gcb_17166 crossref_primary_10_1007_s11069_025_07457_z crossref_primary_10_1038_s43247_025_02530_8 crossref_primary_10_1111_bor_12471 crossref_primary_10_1007_s00477_025_02980_8 crossref_primary_10_5194_hess_28_1527_2024 crossref_primary_10_1111_1752_1688_12864 crossref_primary_10_1038_s41597_023_02251_7 crossref_primary_10_1029_2024GC011869 crossref_primary_10_1002_gdj3_285 crossref_primary_10_3390_rs14174278 crossref_primary_10_3390_rs17111889 crossref_primary_10_1111_csp2_13290 crossref_primary_10_1016_j_dendro_2023_126115 crossref_primary_10_5194_nhess_24_1415_2024 crossref_primary_10_1111_fwb_13831 crossref_primary_10_3389_fevo_2020_00281 crossref_primary_10_1007_s00027_015_0430_7 crossref_primary_10_1016_j_scitotenv_2024_174289 crossref_primary_10_1111_gcb_14753 crossref_primary_10_3390_atmos16040459 crossref_primary_10_1016_j_rser_2024_114439 crossref_primary_10_3897_aiep_53_112183 crossref_primary_10_1016_j_watres_2025_124372 crossref_primary_10_3390_rs11101164 crossref_primary_10_1111_jbi_14300 crossref_primary_10_1016_j_geosus_2020_08_004 crossref_primary_10_1111_fwb_13600 crossref_primary_10_1080_02626667_2025_2461695 crossref_primary_10_5194_cp_16_1987_2020 crossref_primary_10_1029_2020JG005689 crossref_primary_10_1038_s44221_024_00194_w crossref_primary_10_1029_2021EF002062 crossref_primary_10_1016_j_scitotenv_2021_149494 crossref_primary_10_1038_s41586_021_03695_w crossref_primary_10_1016_j_jhydrol_2023_129555 crossref_primary_10_1016_j_scitotenv_2018_10_416 crossref_primary_10_1371_journal_pone_0273984 crossref_primary_10_1016_j_jag_2021_102656 crossref_primary_10_1007_s11356_022_24391_w crossref_primary_10_1002_aqc_3162 crossref_primary_10_1002_2016WR019991 crossref_primary_10_1016_j_jhydrol_2025_133175 crossref_primary_10_2744_CCB_1398_1 crossref_primary_10_1002_ece3_4659 crossref_primary_10_5194_essd_16_4673_2024 crossref_primary_10_1038_s41598_024_58198_1 crossref_primary_10_1007_s10666_023_09886_1 crossref_primary_10_1111_1749_4877_12600 crossref_primary_10_2166_nh_2018_199 crossref_primary_10_3390_d14020084 crossref_primary_10_1029_2023GL103225 crossref_primary_10_5194_essd_8_651_2016 crossref_primary_10_1016_j_ecolind_2025_113919 crossref_primary_10_2166_nh_2024_111 crossref_primary_10_5194_hess_24_4503_2020 crossref_primary_10_1016_j_watres_2022_119380 crossref_primary_10_1038_s43017_023_00511_z crossref_primary_10_1016_j_jenvman_2023_118374 crossref_primary_10_1016_j_pce_2023_103449 crossref_primary_10_1111_cobi_13590 crossref_primary_10_1016_j_jhydrol_2024_130832 crossref_primary_10_1016_j_jenvman_2025_126583 crossref_primary_10_1088_1748_9326_ade4dd crossref_primary_10_5194_nhess_23_2365_2023 crossref_primary_10_1038_s41597_019_0300_6 crossref_primary_10_5194_hess_18_1917_2014 crossref_primary_10_1016_j_rse_2020_111998 crossref_primary_10_1016_j_scitotenv_2021_151992 crossref_primary_10_1029_2018WR023903 crossref_primary_10_1002_ieam_4506 crossref_primary_10_1002_wat2_70025 crossref_primary_10_1111_gcb_15811 crossref_primary_10_1093_inteam_vjaf119 crossref_primary_10_1073_pnas_1920759117 crossref_primary_10_1016_j_cageo_2021_105015 crossref_primary_10_2989_16085914_2021_1976610 crossref_primary_10_3390_w13060816 crossref_primary_10_1016_j_jhydrol_2024_130644 crossref_primary_10_1016_j_envsoft_2024_106108 crossref_primary_10_1016_j_jenvman_2022_115847 crossref_primary_10_1038_s41467_025_57495_1 crossref_primary_10_5194_hess_23_2841_2019 crossref_primary_10_3389_feart_2022_833599 crossref_primary_10_5194_hess_25_5287_2021 crossref_primary_10_1029_2022JG007291 crossref_primary_10_1038_s41597_022_01425_z crossref_primary_10_1016_j_jhydrol_2025_133191 crossref_primary_10_1016_j_rse_2022_113267 crossref_primary_10_1016_j_scitotenv_2024_177118 crossref_primary_10_1038_s41597_024_03226_y crossref_primary_10_1007_s12040_022_01956_4 crossref_primary_10_1002_ece3_3353 crossref_primary_10_1016_j_ecolind_2023_111193 crossref_primary_10_1126_sciadv_adx0298 crossref_primary_10_5194_hess_19_63_2015 crossref_primary_10_1016_j_advwatres_2018_12_005 crossref_primary_10_1016_j_scitotenv_2020_138251 crossref_primary_10_1016_j_earscirev_2020_103276 crossref_primary_10_18307_2025_0441 crossref_primary_10_1038_s41597_020_0362_5 crossref_primary_10_1111_fwb_13645 crossref_primary_10_1007_s00267_022_01662_3 crossref_primary_10_1111_fwb_13885 crossref_primary_10_1007_s10530_022_02814_6 crossref_primary_10_1002_hyp_15167 crossref_primary_10_1088_2515_7620_adb941 crossref_primary_10_1007_s10346_024_02387_6 crossref_primary_10_1016_j_ecolind_2025_113725 crossref_primary_10_1073_pnas_1521540113 crossref_primary_10_1111_gcb_13657 crossref_primary_10_1016_j_jhydrol_2023_129118 crossref_primary_10_1111_ddi_12780 crossref_primary_10_1016_j_jhydrol_2023_130343 crossref_primary_10_1016_j_scitotenv_2024_175146 crossref_primary_10_1111_fwb_13405 crossref_primary_10_1029_2021GL094194 crossref_primary_10_5194_hess_26_6247_2022 crossref_primary_10_1016_j_jhydrol_2023_129353 crossref_primary_10_1038_s41597_025_04975_0 crossref_primary_10_5194_essd_17_1461_2025 crossref_primary_10_1007_s00382_023_06961_x crossref_primary_10_3390_rs16173272 crossref_primary_10_1029_2020TC006536 crossref_primary_10_1016_j_rse_2022_113243 crossref_primary_10_1016_j_scitotenv_2023_166397 crossref_primary_10_1007_s13280_020_01360_6 crossref_primary_10_1007_s41748_025_00756_2 crossref_primary_10_1038_s43247_025_02467_y crossref_primary_10_1038_s41893_024_01367_x crossref_primary_10_1073_pnas_2307072120 crossref_primary_10_1029_2020WR029266 crossref_primary_10_1111_jfb_15011 crossref_primary_10_1038_s41597_025_04502_1 crossref_primary_10_1016_j_marpolbul_2025_118486 crossref_primary_10_1175_JHM_D_21_0053_1 crossref_primary_10_1016_j_biocon_2025_111222 crossref_primary_10_1007_s11069_025_07596_3 crossref_primary_10_1007_s10750_024_05648_6 crossref_primary_10_1016_j_gloplacha_2019_03_004 crossref_primary_10_7554_eLife_101080_3 crossref_primary_10_1080_01431161_2022_2111531 crossref_primary_10_5194_nhess_20_3245_2020 crossref_primary_10_1016_j_ecoser_2016_09_007 crossref_primary_10_1038_s41467_022_30729_2 crossref_primary_10_3390_w13121659 crossref_primary_10_1038_s41598_021_02891_y crossref_primary_10_1038_s41612_025_01083_z crossref_primary_10_1016_j_scitotenv_2022_160941 crossref_primary_10_1093_zoolinnean_zlae076 crossref_primary_10_5194_hess_26_5163_2022 crossref_primary_10_1029_2022WR032743 crossref_primary_10_1111_fme_12285 crossref_primary_10_5209_aguc_69337 crossref_primary_10_1111_fwb_13670 crossref_primary_10_1038_s43017_022_00268_x crossref_primary_10_1109_JSTARS_2025_3584821 crossref_primary_10_1038_s43247_024_01454_z crossref_primary_10_1007_s11356_023_27639_1 crossref_primary_10_3390_w10111578 crossref_primary_10_1111_zsc_12736 crossref_primary_10_1111_fwb_13671 crossref_primary_10_1016_j_scitotenv_2024_177713 crossref_primary_10_1134_S0742046324700738 crossref_primary_10_1007_s40808_025_02526_5 crossref_primary_10_1016_j_quascirev_2024_109150 crossref_primary_10_1029_2022GL100092 crossref_primary_10_1073_pnas_2214291119 crossref_primary_10_1016_j_envsoft_2021_105049 crossref_primary_10_1002_esp_5702 crossref_primary_10_1016_j_quascirev_2024_109159 crossref_primary_10_1002_ece3_71279 crossref_primary_10_1002_hyp_15124 crossref_primary_10_5194_nhess_23_2769_2023 crossref_primary_10_11922_11_6035_csd_2023_0173_zh crossref_primary_10_2205_2024ES000906 crossref_primary_10_1007_s10933_021_00217_6 crossref_primary_10_1029_2022GL102027 crossref_primary_10_5194_hess_29_4557_2025 crossref_primary_10_1029_2024JH000173 crossref_primary_10_1029_2020WR027692 crossref_primary_10_1038_s41586_024_07145_1 crossref_primary_10_5194_cp_20_1595_2024 crossref_primary_10_1016_j_biocon_2025_111092 crossref_primary_10_1111_btp_70079 crossref_primary_10_5194_hess_28_5069_2024 crossref_primary_10_1016_j_dib_2025_111319 crossref_primary_10_5194_hess_25_6381_2021 crossref_primary_10_1111_jfb_15627 crossref_primary_10_1016_j_ecolind_2023_109907 crossref_primary_10_1134_S0001433825700604 crossref_primary_10_1016_j_biocon_2019_05_038 crossref_primary_10_1029_2024WR038308 crossref_primary_10_1088_1748_9326_ac98d9 crossref_primary_10_1088_1748_9326_ad6919 crossref_primary_10_1016_j_energy_2015_12_107 crossref_primary_10_1111_ddi_13686 crossref_primary_10_1007_s41101_022_00149_w crossref_primary_10_3390_rs17101659 crossref_primary_10_1007_s41748_025_00660_9 crossref_primary_10_1016_j_jhydrol_2024_130674 crossref_primary_10_1016_j_jhydrol_2024_130678 crossref_primary_10_1016_j_jhydrol_2025_132910 crossref_primary_10_3390_land12122154 crossref_primary_10_1029_2020MS002221 crossref_primary_10_1098_rspb_2023_1066 crossref_primary_10_1061_NHREFO_NHENG_1911 crossref_primary_10_1016_j_biocon_2021_109234 crossref_primary_10_1016_j_worlddev_2019_104848 crossref_primary_10_1029_2021WR030386 crossref_primary_10_1016_j_rsase_2023_101067 crossref_primary_10_5194_hess_27_3221_2023 crossref_primary_10_1029_2021WR030382 crossref_primary_10_1016_j_biocon_2019_05_042 crossref_primary_10_1016_j_jclepro_2024_142546 crossref_primary_10_1080_07038992_2021_1924646 crossref_primary_10_1111_ddi_13211 crossref_primary_10_1371_journal_pone_0247876 crossref_primary_10_1371_journal_pone_0325693 crossref_primary_10_3390_su13084153 crossref_primary_10_1016_j_jclepro_2023_140128 crossref_primary_10_1016_j_wace_2025_100762 crossref_primary_10_3389_fenvs_2021_643367 crossref_primary_10_15184_aqy_2025_10148 crossref_primary_10_1111_jfb_15884 crossref_primary_10_1016_j_aeolia_2017_06_002 crossref_primary_10_1016_j_ecolind_2022_109847 crossref_primary_10_1016_j_jnc_2025_126850 crossref_primary_10_3390_hydrology11080119 crossref_primary_10_1029_2017WR022478 crossref_primary_10_1088_1748_9326_abcb37 crossref_primary_10_1038_ngeo2972 crossref_primary_10_1038_s44304_025_00121_3 crossref_primary_10_1029_2023WR036896 crossref_primary_10_3390_hydrology12080202 crossref_primary_10_1088_1748_9326_ab10ee crossref_primary_10_3390_w17081200 crossref_primary_10_1144_SP553_2023_218 crossref_primary_10_1111_fwb_13477 crossref_primary_10_5194_hess_20_2047_2016 crossref_primary_10_1111_fwb_70014 crossref_primary_10_5194_essd_13_2001_2021 crossref_primary_10_1145_3757892_3757904 crossref_primary_10_3390_su11041131 crossref_primary_10_1016_j_jhydrol_2019_03_042 crossref_primary_10_3390_land12020340 crossref_primary_10_1016_j_scitotenv_2023_168982 crossref_primary_10_1029_2025EF005966 crossref_primary_10_1016_j_rse_2021_112725 crossref_primary_10_1029_2022WR032312 crossref_primary_10_1016_j_biocon_2020_108903 crossref_primary_10_1007_s10661_015_4912_9 crossref_primary_10_1038_s41598_020_59867_7 crossref_primary_10_1016_j_envres_2025_121212 crossref_primary_10_1016_j_quascirev_2018_06_001 crossref_primary_10_1016_j_ympev_2023_107856 crossref_primary_10_1016_j_rse_2025_114744 crossref_primary_10_1371_journal_pone_0281933 crossref_primary_10_1038_s41597_024_03749_4 crossref_primary_10_1016_j_watres_2023_120622 crossref_primary_10_3390_hydrology8040164 crossref_primary_10_1016_j_rines_2024_100042 crossref_primary_10_1088_1748_9326_ad383d crossref_primary_10_1029_2023WR034692 crossref_primary_10_1111_fwb_13490 crossref_primary_10_1029_2023WR035781 crossref_primary_10_1029_2022GB007657 crossref_primary_10_5194_tc_18_2487_2024 crossref_primary_10_1002_hyp_70154 crossref_primary_10_1007_s40030_023_00762_5 crossref_primary_10_1029_2023GL105064 crossref_primary_10_1093_pnasnexus_pgaf096 crossref_primary_10_1016_j_watres_2022_119347 crossref_primary_10_1038_s41467_024_51302_z crossref_primary_10_1016_j_jhydrol_2024_131565 crossref_primary_10_1080_09715010_2023_2292280 crossref_primary_10_5194_essd_15_2927_2023 crossref_primary_10_1007_s10750_019_04136_6 crossref_primary_10_1038_s41597_023_02732_9 crossref_primary_10_4000_archaeonautica_1919 crossref_primary_10_1002_aqc_3596 crossref_primary_10_1016_j_rse_2022_113099 crossref_primary_10_1111_jfb_70219 crossref_primary_10_1016_j_pecon_2018_09_002 crossref_primary_10_1016_j_ecolind_2025_113312 crossref_primary_10_1016_j_biocon_2016_09_005 crossref_primary_10_1371_journal_pone_0318951 crossref_primary_10_1016_j_ympev_2021_107261 crossref_primary_10_1007_s10531_023_02587_x crossref_primary_10_1016_j_jas_2022_105550 crossref_primary_10_1016_j_apgeog_2024_103342 crossref_primary_10_1038_s41597_021_00819_9 crossref_primary_10_1111_conl_12312 crossref_primary_10_1038_s41597_022_01132_9 crossref_primary_10_1029_2022WR033681 crossref_primary_10_1038_s44221_024_00276_9 crossref_primary_10_1016_j_rsase_2025_101550 crossref_primary_10_1029_2019JD031456 crossref_primary_10_1515_geo_2025_0856 crossref_primary_10_1007_s13280_025_02137_5 crossref_primary_10_1002_2014GL059744 crossref_primary_10_1016_j_rse_2025_114712 crossref_primary_10_3390_land11030371 crossref_primary_10_1002_lno_12706 crossref_primary_10_1038_s41598_019_39365_1 crossref_primary_10_1016_j_scitotenv_2022_153205 crossref_primary_10_3390_rs14236177 crossref_primary_10_3390_su122410271 crossref_primary_10_59717_j_xinn_geo_2025_100132 crossref_primary_10_1016_j_ecolind_2020_106518 crossref_primary_10_1111_gwat_13124 crossref_primary_10_1038_s41467_022_28029_w crossref_primary_10_1016_j_gr_2025_07_017 crossref_primary_10_1016_j_jcz_2025_07_003 crossref_primary_10_1080_17538947_2025_2513044 crossref_primary_10_1016_j_jhydrol_2024_132112 crossref_primary_10_1007_s00382_024_07548_w crossref_primary_10_1029_2023WR036460 crossref_primary_10_1007_s10669_024_09967_w crossref_primary_10_1016_j_rsase_2025_101565 crossref_primary_10_1111_gcb_15285 crossref_primary_10_1016_j_jue_2024_103735 crossref_primary_10_1002_ece3_9300 crossref_primary_10_3390_rs17081377 crossref_primary_10_1073_pnas_2417812122 crossref_primary_10_1016_j_apenergy_2019_02_009 crossref_primary_10_1016_j_quascirev_2016_05_012 crossref_primary_10_1016_j_jhydrol_2025_133734 crossref_primary_10_1016_j_scitotenv_2021_146664 crossref_primary_10_3390_ijgi10060384 crossref_primary_10_1111_1752_1688_13134 crossref_primary_10_1590_1676_0611_bn_2023_1481 crossref_primary_10_1080_15715124_2023_2278678 crossref_primary_10_3390_w10101359 crossref_primary_10_1371_journal_pstr_0000106 crossref_primary_10_1186_s13021_021_00191_6 crossref_primary_10_1016_j_eiar_2025_107929 crossref_primary_10_1016_j_scitotenv_2022_156756 crossref_primary_10_1016_j_rsma_2024_103511 crossref_primary_10_1002_aqc_2638 crossref_primary_10_1016_j_rse_2024_114333 crossref_primary_10_1016_j_scitotenv_2024_173852 crossref_primary_10_1002_2013WR014664 crossref_primary_10_3390_rs13245117 crossref_primary_10_1016_j_rse_2025_114926 crossref_primary_10_3390_rs70708779 crossref_primary_10_1038_s41467_023_41812_7 crossref_primary_10_1016_j_jhydrol_2024_132336 crossref_primary_10_1007_s10750_021_04589_8 crossref_primary_10_1038_s41597_023_02008_2 crossref_primary_10_1016_j_ecolind_2023_110848 crossref_primary_10_5194_bg_20_1423_2023 crossref_primary_10_1038_s41467_022_29616_7 crossref_primary_10_1016_j_rse_2020_112281 crossref_primary_10_1073_pnas_2014016117 crossref_primary_10_1007_s11069_025_07209_z crossref_primary_10_1029_2021JF006147 crossref_primary_10_1038_s41558_022_01355_z crossref_primary_10_1111_cobi_13914 crossref_primary_10_3390_d15020260 crossref_primary_10_1016_j_envsoft_2018_05_018 crossref_primary_10_1080_01431161_2024_2412802 crossref_primary_10_1029_2025EF006648 crossref_primary_10_3390_w12123543 crossref_primary_10_55959_MSU0579_9406_4_2024_63_6_32_41 crossref_primary_10_1016_j_gecco_2016_12_005 crossref_primary_10_1016_j_jhydrol_2018_11_037 crossref_primary_10_2166_wp_2020_235 crossref_primary_10_3390_d15060710 crossref_primary_10_3389_feart_2024_1386547 crossref_primary_10_1016_j_jhydrol_2025_133516 crossref_primary_10_3390_rs13245146 crossref_primary_10_1111_1752_1688_13110 crossref_primary_10_1016_j_gloplacha_2025_104903 crossref_primary_10_1016_j_jhydrol_2024_131294 crossref_primary_10_1029_2022WR032395 crossref_primary_10_1029_2023WR035164 crossref_primary_10_3390_w13131825 crossref_primary_10_1038_s41598_022_07080_z crossref_primary_10_3390_su12166402 crossref_primary_10_1038_s41597_022_01256_y crossref_primary_10_1080_19475705_2024_2404596 crossref_primary_10_1111_gcb_15251 crossref_primary_10_1111_gcb_15010 crossref_primary_10_1038_s41467_023_39194_x crossref_primary_10_1038_s43247_023_00968_2 crossref_primary_10_1080_02626667_2023_2269909 crossref_primary_10_5194_essd_16_201_2024 crossref_primary_10_1029_2023EF004279 crossref_primary_10_3389_feart_2025_1569178 crossref_primary_10_1016_j_jhydrol_2018_11_044 crossref_primary_10_1029_2024EA003743 crossref_primary_10_3390_w15193482 crossref_primary_10_1002_ecs2_70235 crossref_primary_10_1016_j_ejrh_2025_102576 crossref_primary_10_1016_j_jhydrol_2025_132895 crossref_primary_10_1029_2018WR024205 crossref_primary_10_3390_su14020927 crossref_primary_10_1016_j_jhydrol_2025_133988 crossref_primary_10_1016_j_dendro_2024_126164 crossref_primary_10_1080_01650424_2025_2468665 crossref_primary_10_1111_oik_09802 crossref_primary_10_3897_neotropical_17_e80062 crossref_primary_10_1016_j_eneco_2021_105571 crossref_primary_10_1016_j_gloplacha_2025_104915 crossref_primary_10_1088_2752_5295_ad34a9 crossref_primary_10_1038_s43247_025_02416_9 crossref_primary_10_1088_1748_9326_ac46ec crossref_primary_10_1073_pnas_2211974120 crossref_primary_10_3390_w16040536 crossref_primary_10_2166_wp_2021_264 crossref_primary_10_1016_j_resconrec_2023_107088 crossref_primary_10_1038_s41597_025_04915_y crossref_primary_10_3390_rs16020328 crossref_primary_10_1016_j_envsoft_2023_105688 crossref_primary_10_1016_j_biocon_2024_110761 crossref_primary_10_1016_j_joule_2020_07_018 crossref_primary_10_1109_TGRS_2024_3496731 crossref_primary_10_1126_science_adl2373 crossref_primary_10_5194_hess_19_91_2015 crossref_primary_10_1016_j_jhydrol_2022_127898 crossref_primary_10_1038_s41598_019_48528_z crossref_primary_10_1038_s41467_025_58716_3 crossref_primary_10_1029_2020WR027883 crossref_primary_10_1029_2024WR039692 crossref_primary_10_3103_S0145875225700139 crossref_primary_10_1029_2024JD043143 crossref_primary_10_1016_j_jnc_2021_126043 crossref_primary_10_1016_j_quascirev_2018_09_008 crossref_primary_10_1002_esp_4999 crossref_primary_10_1051_e3sconf_202022303007 crossref_primary_10_1038_s41597_023_02215_x crossref_primary_10_1111_fwb_14073 crossref_primary_10_1007_s10040_022_02570_w crossref_primary_10_1016_j_heliyon_2024_e31643 crossref_primary_10_1016_j_envsoft_2020_104927 crossref_primary_10_1016_j_earscirev_2022_104288 crossref_primary_10_1016_j_marenvres_2025_107017 crossref_primary_10_1029_2021GL096676 crossref_primary_10_3390_rs14195009 crossref_primary_10_1029_2024GL114047 crossref_primary_10_1016_j_jhydrol_2025_133794 crossref_primary_10_1371_journal_pone_0120198 crossref_primary_10_1002_aqc_3902 crossref_primary_10_5194_hess_28_1215_2024 crossref_primary_10_1111_brv_70059 crossref_primary_10_1038_s44221_024_00208_7 crossref_primary_10_1038_s41467_024_54853_3 crossref_primary_10_1111_sed_13062 crossref_primary_10_1038_s41893_024_01359_x crossref_primary_10_1038_s41597_020_0436_4 crossref_primary_10_1016_j_biocon_2023_110233 crossref_primary_10_5194_hess_21_5143_2017 crossref_primary_10_3390_w12030788 crossref_primary_10_1111_jbi_14263 crossref_primary_10_1139_gen_2025_0041 crossref_primary_10_1029_2024EF005070 crossref_primary_10_3390_rs13142764 crossref_primary_10_1007_s11269_025_04227_1 crossref_primary_10_1038_s41467_023_37062_2 crossref_primary_10_3390_rs16050813 crossref_primary_10_5194_nhess_25_2351_2025 crossref_primary_10_1007_s10346_024_02447_x crossref_primary_10_3390_rs16122078 crossref_primary_10_3390_w17071098 crossref_primary_10_1029_2020EF001668 crossref_primary_10_1038_s41597_024_03752_9 crossref_primary_10_1111_1365_2664_70057 crossref_primary_10_1016_j_jglr_2021_06_006 crossref_primary_10_3389_fgene_2020_596662 crossref_primary_10_1016_j_scitotenv_2023_168120 crossref_primary_10_1038_s41597_023_02618_w crossref_primary_10_1038_s41597_025_04406_0 crossref_primary_10_1038_s41893_018_0064_6 crossref_primary_10_1073_pnas_2413013121 crossref_primary_10_1038_s41467_022_33239_3 crossref_primary_10_1029_2020WR028096 crossref_primary_10_1002_2016JF004175 crossref_primary_10_1038_s41893_022_00936_2 crossref_primary_10_1111_1752_1688_12456 crossref_primary_10_1002_gdj3_111 crossref_primary_10_1016_j_geomorph_2015_06_047 crossref_primary_10_1016_j_eti_2024_103686 crossref_primary_10_1029_2023GL105804 crossref_primary_10_1029_2020GL090374 crossref_primary_10_1029_2020GL090134 crossref_primary_10_1038_s43247_025_02320_2 crossref_primary_10_1111_geb_70065 crossref_primary_10_3390_w11091760 crossref_primary_10_1038_s43247_024_01655_6 crossref_primary_10_1016_j_jhydrol_2023_129705 crossref_primary_10_1029_2024JB029023 crossref_primary_10_1525_elementa_2024_00031 crossref_primary_10_1007_s00382_020_05381_5 crossref_primary_10_1007_s11442_025_2347_y crossref_primary_10_3390_d14100848 crossref_primary_10_1007_s10712_015_9348_9 crossref_primary_10_1126_science_aat0636 crossref_primary_10_1038_s41597_022_01888_0 crossref_primary_10_1007_s00704_023_04388_2 crossref_primary_10_1007_s10661_024_13315_5 crossref_primary_10_5194_piahs_385_103_2024 crossref_primary_10_1016_j_watres_2024_122782 crossref_primary_10_1007_s10531_024_02782_4 crossref_primary_10_1038_s41597_022_01613_x crossref_primary_10_1016_j_biocon_2019_108399 crossref_primary_10_1007_s10584_020_02828_w crossref_primary_10_1029_2022JB024176 crossref_primary_10_1029_2024WR038183 crossref_primary_10_1016_j_atmosres_2024_107761 crossref_primary_10_5194_bg_13_1387_2016 crossref_primary_10_1016_j_envres_2023_118040 crossref_primary_10_1029_2024MS004379 crossref_primary_10_3897_BDJ_12_e109785 crossref_primary_10_1016_j_quascirev_2020_106656 crossref_primary_10_1029_2025EF006499 crossref_primary_10_1016_j_apgeog_2022_102716 crossref_primary_10_1073_pnas_2211942119 crossref_primary_10_3390_d14100842 crossref_primary_10_1126_science_adn1262 crossref_primary_10_5194_gmd_18_4601_2025 crossref_primary_10_1016_j_envpol_2025_126062 crossref_primary_10_1029_2021EF002420 crossref_primary_10_1016_j_ecolind_2023_110256 crossref_primary_10_1111_fwb_13805 crossref_primary_10_1007_s10346_024_02421_7 crossref_primary_10_1016_j_rse_2019_03_014 crossref_primary_10_5194_essd_15_521_2023 crossref_primary_10_3389_fclim_2022_902586 crossref_primary_10_1007_s10661_023_11448_7 crossref_primary_10_1038_s41597_022_01844_y crossref_primary_10_1038_s41598_019_54980_8 crossref_primary_10_1111_geb_13299 crossref_primary_10_3390_land14050985 crossref_primary_10_5194_esd_8_653_2017 crossref_primary_10_1080_17538947_2025_2449706 crossref_primary_10_1088_1755_1315_502_1_012035 crossref_primary_10_1111_csp2_12853 crossref_primary_10_1016_j_ejrh_2025_102713 crossref_primary_10_1038_s44185_025_00098_2 crossref_primary_10_3390_cli11060118 crossref_primary_10_1016_j_horiz_2022_100039 crossref_primary_10_1029_2023JG007502 crossref_primary_10_1680_jensu_23_00080 crossref_primary_10_1016_j_jag_2022_103037 crossref_primary_10_1016_j_scitotenv_2021_145944 crossref_primary_10_1007_s43832_024_00179_6 crossref_primary_10_1073_pnas_1902484116 crossref_primary_10_1111_geb_70026 crossref_primary_10_3390_f11080804 crossref_primary_10_1002_hyp_13601 crossref_primary_10_1016_j_biocon_2024_110591 crossref_primary_10_1175_BAMS_D_16_0036_1 crossref_primary_10_1007_s11069_021_05010_2 crossref_primary_10_1007_s10750_022_05056_8 crossref_primary_10_1111_gcb_17289 crossref_primary_10_1016_j_geomorph_2023_109048 crossref_primary_10_1061_JGGEFK_GTENG_13737 |
| Cites_doi | 10.1016/S0022-1694(02)00283-4 10.1029/2001GB001396 10.1016/j.jenvman.2009.05.020 10.1029/2008GB003435 10.1007/978‐3‐642‐10228‐8_35 10.1016/j.jhydrol.2011.08.004 10.1029/1998WR900068 10.5194/hess‐13‐2241‐2009 10.1080/07438141.2010.504321 10.1029/2008GLO35296 10.1002/(SICI)1099-1646(200001/02)16:1<83::AID-RRR567>3.0.CO;2-T 10.1016/j.jhydrol.2009.02.007 10.1111/j.1467‐9671.2006.00254.x 10.1175/1087‐3562(1998)002<0001:DOTRIP>2.3.CO;2 10.1029/2010WR010090 10.1126/science.289.5477.284 10.1002/hyp.7252 10.1029/2007WR006331 10.1021/es980301x 10.1139/f80-017 10.1175/1520-0442(2000)013<0686:MTHSAT>2.0.CO;2 10.1175/2011JHM1345.1 10.1061/(ASCE)0733‐9496(1993)119:2(141 http://dx.doi.org/10.1016/j.asr.2012.11.002 10.1016/S0022-1694(00)00282-1 10.1016/j.jhydrol.2006.04.029 10.1016/j.gloenvcha.2003.10.004 10.1890/070062 10.1111/j.1466‐8238.2010.00587.x 10.1029/1999GB900046 10.1016/j.envsoft.2010.01.007 10.1016/j.jhydrol.2011.06.007 10.1029/2006JD007847 10.1175/2011JHM1324.1 10.1068/b2624 10.1016/j.geomorph.2010.03.018 10.1029/2001WR900024 10.1021/es034430b 10.1623/hysj.48.3.317.45290 10.1016/j.jhydrol.2009.02.043 10.1016/S0022‐1694(99)00011‐6 10.1111/j.1752-1688.1994.tb03321.x 10.1016/j.rse.2011.03.009 10.1016/S0921‐8181(03)00023‐7 10.1016/j.scitotenv.2009.10.046 10.1007/s10980-008-9283-y 10.1016/j.jhydrol.2005.11.011 10.1016/j.jhydrol.2009.09.028 10.1890/1540‐9295(2005)003[0138:AGAFDS]2.0.CO;2 10.1016/j.jhydrol.2012.02.045 10.1016/j.jhydrol.2004.03.028 10.1038/nature09549 10.1016/S0022‐1694(01)00565‐0 10.1029/2008EO100001 10.1080/014311600210191 10.1016/j.cageo.2008.04.007 10.5194/hess-14-1-2010 10.1029/2010WR009726 10.1016/j.jhydrol.2012.01.005 10.1002/hyp.5145 10.1899/09‐073.1 10.1007/s00267-002-2737-0 10.1126/science.1128845 10.1006/jema.2000.0372 10.1016/S0022‐1694(00)00178‐5 10.5194/hessd‐4‐4389‐2007 10.1890/100014 10.1029/2008GB003281 10.1002/hyp.7795 10.1890/100125 10.1002/rra.1150 10.1029/2007GB002947 10.5194/hess-13-2413-2009 10.1016/j.jhydrol.2006.03.009 10.1073/pnas.1010808108 10.1016/j.jhydrol.2009.07.031 10.5194/hess-9-535-2005 10.1111/j.1365‐2427.2008.02135.x 10.1007/s10533‐008‐9274‐8 10.1016/j.crte.2009.12.004 10.1641/0006‐3568(2006)56[591:LSISE]2.0.CO;2 10.1016/S0304‐3894(98)00108‐3 10.1038/ngeo629 10.1029/GB003i003p00241 10.1007/BF02592101 |
| ContentType | Journal Article |
| Copyright | Copyright © 2013 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2013 John Wiley & Sons, Ltd. |
| DBID | BSCLL AAYXX CITATION |
| DOI | 10.1002/hyp.9740 |
| DatabaseName | Istex CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1099-1085 |
| EndPage | 2186 |
| ExternalDocumentID | 10_1002_hyp_9740 HYP9740 ark_67375_WNG_VR13B1FR_4 |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~KM ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN RWI WRC WWD AAYXX CITATION O8X |
| ID | FETCH-LOGICAL-a3260-aa12c59561e194db75cf25d08e2caf0a3f4617e2ed66269c393cfe4bf24deeac3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 1264 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000325218100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-6087 |
| IngestDate | Tue Nov 18 22:39:16 EST 2025 Sat Nov 29 03:02:41 EST 2025 Wed Jan 22 16:45:23 EST 2025 Tue Nov 11 03:32:53 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a3260-aa12c59561e194db75cf25d08e2caf0a3f4617e2ed66269c393cfe4bf24deeac3 |
| Notes | istex:C8184B674017252BB1EF6E13EB5131BD946C7B76 ark:/67375/WNG-VR13B1FR-4 ArticleID:HYP9740 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1002_hyp_9740 crossref_citationtrail_10_1002_hyp_9740 wiley_primary_10_1002_hyp_9740_HYP9740 istex_primary_ark_67375_WNG_VR13B1FR_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-07-15 15 July 2013 |
| PublicationDateYYYYMMDD | 2013-07-15 |
| PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Hydrological processes |
| PublicationTitleAlternate | Hydrol. Process |
| PublicationYear | 2013 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | MRC (Mekong River Commission). 2009. Hydropower Project Database. Mekong River Commission: Vientiane, Lao PDR. MacDonald GK, Bennett EM, Potter PA, Ramankutty N. 2011. Agronomic phosphorus imbalances across the world's croplands. Proceedings of the National Academy of Sciences of the United States of America 108: 3086-91. DOI:10.1073/pnas.1010808108 Ahuja RK, Magnanti TL, Orlin JB. 1993. Network flows: theory, algorithms and applications. Prentice Hall: Englewood Cliffs, NJ. Cote D, Kehler DG, Bourne C, Wiersma YF. 2009. A new measure of longitudinal connectivity for stream networks. Landscape Ecology 24: 101-113. Whiteaker TL, Maidment DR, Goodall JL, Takamatsu M. 2006. Integrating Arc Hydro Features with a Schematic Network. Transactions in GIS 10: 219-237. DOI:10.1111/j.1467-9671.2006.00254.x Coe MT. 2000. Modeling terrestrial hydrological systems at the continental scale: Testing the accuracy of an atmospheric GCM. Journal of Climate 13: 686-704. Bunn SE, Arthington AH. 2002. Basic principles and consequences of altered hydrological regimes for aquatic biodiversity. Environmental Management 30: 492-507. Ellis EC, Ramankutty N. 2008. Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment 6: 439-447. Siebert S, Döll P, Hoogeveen J, Faures J-M, Frenken K, Feick S. 2005. Development and validation of the global map of irrigation areas. Hydrology and Earth System Sciences 9: 535-547. Klein Goldewijk K, Beusen A, Van Drecht G, De Vos M. 2011. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecology and Biogeography 20: 73-86. DOI:10.1111/j.1466-8238.2010.00587.x Yamazaki D, Oki T, Kanae S. 2009. Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map. Hydrology and Earth System Sciences 13: 2241-2251. DOI:10.5194/hess-13-2241-2009 Alcamo J, Döll P, Henrichs T, Kaspar F, Lehner B, Rösch T, Siebert S. 2003. Development and testing of the WaterGAP 2 global model of water use and availability. Hydrological Sciences Journal 48: 317-337. DOI:10.1623/hysj.48.3.317.45290 Alexander RB, Böhlke JK, Boyer EW, David MB, Harvey JW, Mulholland PJ, Seitzinger SP, Tobias CR, Tonitto C, Wollheim WM. 2009. Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes. Biogeochemistry 93: 91-116. DOI:10.1007/s10533-008-9274-8 Lehner B, Verdin K, Jarvis A. 2008. New global hydrography derived from spaceborne elevation data. EOS, Transactions of the American Geophysical Union 89: 93-104. Pistocchi A, Vizcaino P, Hauck M. 2009. A GIS model-based screening of potential contamination of soil and water by pyrethroids in Europe. Journal of Environmental Management 90: 3410-21. DOI:10.1016/j.jenvman.2009.05.020 Richter BD, Postel S, Revenga C, Scudder T, Lehner B, Churchill A, Chow M. 2010. Lost in development's shadow: The downstream human consequences of dams. Water Alternatives 3: 14-42. Ganio LM, Torgersen CE, Gresswell RE. 2005. A geostatistical approach for describing spatial pattern in stream networks. Frontiers in Ecology and the Environment 3: 138-144. DOI:10.1890/1540-9295(2005)003[0138:AGAFDS]2.0.CO;2 Hanasaki N, Inuzuka T, Kanae S, Oki T. 2010. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. Journal of Hydrology 384: 232-244. DOI:10.1016/j.jhydrol.2009.09.028 FAO, IIASA, ISRIC, ISS-CAS, and JRC. 2012. Harmonized World Soil Database (version 1.2). FAO: Rome, Italy, and IIASA: Laxenburg, Austria. Andersson E, Nilsson C, Johansson ME. 2000. Effects of river fragmentation on plant dispersal and riparian flora. Regulated Rivers: Research & Management 16: 83-89. Vieux BE, Needham S. 1993. Nonpoint-Pollution Model Sensitivity to Grid-Cell Size. Journal of Water Resources Planning and Management 119: 141-157. DOI:10.1061/(ASCE)0733-9496(1993)119:2(141) Feijtel T, Boeije G, Matthies M, Young A, Morris G, Gandolfi C, Hansen B, Fox K, Matthijs E, Koch V, Schroder R, Cassani G, Schowanek D, Rosenblom J, Holt M. 1998. Development of a geography-referenced regional exposure assessment tool for European rivers-GREAT-ER. Journal of Hazardous Materials 61: 59-65. DOI:10.1016/S0304-3894(98)00108-3 Oki T, Sud YC. 1998. Design of Total Runoff Integrating Pathways (TRIP)-A Global River Channel Network. Earth Interactions 2: 1-37. DOI:10.1175/1087-3562(1998)002<0001:DOTRIP>2.3.CO;2 Maidment DR. 1993. Handbook of Hydrology. McGraw-Hill: New York. Lehner B, Liermann CR, Revenga C, Vörösmarty CJ, Fekete B, Crouzet P, Döll P, Endejan M, Frenken K, Magome J, Nilsson C, Robertson JC, Rödel R, Sindorf N, Wisser D. 2011. High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment 9: 494-502. DOI:10.1890/100125 Wang X, White-Hull C, Dyer S, Yang Y. 2000. GIS-ROUT: a river model for watershed planning. Environment and Planning B: Planning and Design 27: 231-246. DOI:10.1068/b2624 Kummu M, Lu XX, Wang JJ, Varis O. 2010. Basin-wide sediment trapping efficiency of emerging reservoirs along the Mekong. Geomorphology 119: 181-197. DOI:10.1016/j.geomorph.2010.03.018 Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K. 2011. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment 9: 53-60. DOI:10.1890/100014 Paiva RCD, Collischonn W, Tucci CEM. 2011. Large scale hydrologic and hydrodynamic modelling using limited data and a GIS based approach. Journal of Hydrology 406: 170-181. Vörösmarty CJ, Moore III B, Grace AL, Gildea MP, Melillo JM, Peterson BJ, Rastetter EB, Steudler PA . 1989. Continental scale models of water balance and fluvial transport: an application to South America. Global Biogeochemical Cycles 3: 241-265. Rost S, Gerten D, Bondeau A, Lucht W, Rohwer J, Schaphoff S. 2008. Agricultural green and blue water consumption and its influence on the global water system. Water Resources Research 44: 1-17. DOI:10.1029/2007WR006331 Sahoo AK, Pan M, Troy TJ, Vinukollu RK, Sheffield J, Wood EF. 2011. Reconciling the global terrestrial water budget using satellite remote sensing. Remote Sensing of Environment 115: 1850-1865. DOI:10.1016/j.rse.2011.03.009 Yamazaki D, Kanae S, Kim H, Oki T. 2011. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resources Research 47: 1-21. DOI:10.1029/2010WR009726 David CH, Maidment DR, Niu G-Y, Yang Z-L, Habets F, Eijkhout V. 2011. River Network Routing on the NHDPlus Dataset. Journal of Hydrometeorology 12: 913-934. DOI:10.1175/2011JHM1345.1 Donner SD, Coe MT, Lenters JD, Twine TE, Foley JA. 2002. Modeling the impact of hydrological changes on nitrate transport in the Mississippi River Basin from 1955 to 1994. Global Biogeochemical Cycles 16: 1-19. DOI:10.1029/2001GB001396 Graham ST, Famiglietti JS, Maidment DR. 1999. Five-Minute, 1/2°, and 1° Data Sets of Continental Watersheds and River Networks for Use in Regional and Global Hydrologic and Climate System Modeling Studies. Water Resources Research 35: 583-587. DOI:10.1029/1998WR900068 Hollister J, Milstead WB. 2010. Using GIS to estimate lake volume from limited data. Lake and Reservoir Management 26: 194-199. DOI:10.1080/07438141.2010.504321 Yamazaki D, Baugh C, Bates PD, Kanae S, Alsdorf DE, Oki T. 2012. Adjustment of a spaceborne DEM for use in floodplain hydrodynamic modelling. Journal of Hydrology 436-437: 81-91. DOI:10.1016/j.jhydrol.2012.02.045 Llovel W, Becker M, Cazenave A, Crétaux J-F, Ramillien G. 2010. Global land water storage change from GRACE over 2002-2009; Inference on sea level. Comptes Rendus Geoscience 342: 179-188. DOI:10.1016/j.crte.2009.12.004 Aspinall R, Pearson D. 2000. Integrated geographical assessment of environmental condition in water catchments: Linking landscape ecology, environmental modelling and GIS. Journal of Environmental Management 59: 299-319. DOI:10.1006/jema.2000.0372 Monfreda C, Ramankutty N, Foley JA. 2008. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year. Global Biogeochemical Cycles, 22: 1-19. Pistocchi A, Pennington D. 2006. European hydraulic geometries for continental scale environmental modelling. Journal of Hydrology 329: 553-567. DOI:10.1016/j.jhydrol.2006.03.009 Wisser D, Fekete BM, Vörösmarty CJ, Schumann AH. 2010. Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network-Hydrology (GTN-H). Hydrology and Earth System Sciences 14: 1-24. Renssen H, Knoop JM. 2000. A global river routing network for use in hydrological modeling. Journal of Hydrology 230: 230-243. DOI:10.1016/S0022-1694(00)00178-5 Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Reidy Liermann C, Davies PM. 2010. Global threats to human water security and river biodiversity. Nature 467: 555-561. DOI:10.1038/nature09549 Döll P, Lehner B. 2002. Validation of a new global 30-min drainage direction map. Journal of Hydrology 258: 214-231. DOI:10.1016/S0022-1694(01)00565-0 Loveland T, Reed B, Brown J, Ohlen D, Zhu Z, Yang L, Merchant J. 2000. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing 21: 1303-1330. Verdin KL, Verdin JP. 1999. A topological system for delineation and codification of the Earth's river basins. Journal of Hydrology 218: 1-12. DOI:10.1016/S0022-1694(99)00011-6 Lassalle G, Crouzet P, Rochard E. 2009. Modelling the current distribution of European diadromous fishes: an approach integrating regional anthropogenic pressures. Freshwater Biology 54: 587-606. DOI:10.1111/j.1365-2427.2008.02135.x Alvarez-Cobelas M, Sánchez-Carrillo S, Angeler DG, Sánchez-Andrés R. 2009. Pho 2002; 16 2010; 56 2011; 115 2010; 14 2010; 467 2010; 342 2012; 436–437 2003; 270 2006; 330 1996; 73 2010; 384 2008; 35 2003; 17 2011; 12 2008; 6 1980; 37 2009; 13 2004; 296 2011; 406 2006; 329 2010; 26 2000; 16 2009; 54 2010; 25 2010; 24 2000; 59 2010; 119 2000 2004; 38 2011; 408 2009; 93 2000; 13 2009; 90 2011; 20 1999; 13 2003; 48 2008; 24 2007; 4 2008; 22 2011; 25 2010; 3 2006; 327 1994; 30 2009; 368 2009; 369 1999; 218 2009; 23 1989; 3 2009; 24 2010; 408 2000; 27 2002; 30 2012 2011 2010 2006; 10 2000a; 237 2000; 21 2009 2008 2002; 258 2007 2000; 230 2003; 39 1993 1998; 61 2003 2002 2006; 313 2009; 28 2011; 9 2007; 112 2009; 35 2011; 108 1993; 119 2004; 14 2005; 9 2012; 424–425 1999; 35 2000b; 289 2008; 89 2001; 37 1998; 2 2008; 44 2005; 3 2011; 47 1997; 606 2009; 2 1998; 32 1988; 60 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 MRC (Mekong River Commission) (e_1_2_9_61_1) 2009 e_1_2_9_71_1 Fekete B (e_1_2_9_34_1) 2001; 37 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 Ahuja RK (e_1_2_9_2_1) 1993 FAO (e_1_2_9_32_1) 2012 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_9_1 Richter BD (e_1_2_9_75_1) 2010; 3 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_101_1 Butkus SR (e_1_2_9_18_1) 1988; 60 e_1_2_9_39_1 e_1_2_9_16_1 Maidment DR (e_1_2_9_58_1) 2002 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 Chapra SC (e_1_2_9_19_1) 1997 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 Maidment DR (e_1_2_9_57_1) 1993 |
| References_xml | – reference: Llovel W, Becker M, Cazenave A, Crétaux J-F, Ramillien G. 2010. Global land water storage change from GRACE over 2002-2009; Inference on sea level. Comptes Rendus Geoscience 342: 179-188. DOI:10.1016/j.crte.2009.12.004 – reference: Portmann FT, Siebert S, Döll P. 2010. MIRCA2000 - Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles 24: GB1011. DOI:10.1029/2008GB003435 – reference: Yamazaki D, Baugh C, Bates PD, Kanae S, Alsdorf DE, Oki T. 2012. Adjustment of a spaceborne DEM for use in floodplain hydrodynamic modelling. Journal of Hydrology 436-437: 81-91. DOI:10.1016/j.jhydrol.2012.02.045 – reference: Prigent C, Papa F, Aires F, Rossow WB, Matthews E. 2007. Global inundation dynamics inferred from multiple satellite observations, 1993-2000. Journal of Geophysical Research 112: 1-13. DOI:10.1029/2006JD007847 – reference: Alexander RB, Böhlke JK, Boyer EW, David MB, Harvey JW, Mulholland PJ, Seitzinger SP, Tobias CR, Tonitto C, Wollheim WM. 2009. Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes. Biogeochemistry 93: 91-116. DOI:10.1007/s10533-008-9274-8 – reference: Coe MT, Costa MH, Soares-Filho BS. 2009. The influence of historical and potential future deforestation on the stream flow of the Amazon River - Land surface processes and atmospheric feedbacks. Journal of Hydrology 369: 165-174. DOI:10.1016/j.jhydrol.2009.02.043 – reference: Vörösmarty CJ, Fekete B, Meybeck M, Lammers RB. 2000a. Geomorphometric attributes of the global system of rivers at 30-minute spatial resolution. Journal of Hydrology 237: 17-39. – reference: Anderson PD, D'Aco VJ, Shanahan P, Chapra SC, Buzby ME, Cunningham VL, Duplessie BM, Hayes EP, Mastrocco FJ, Parke NJ, Rader JC, Samuelian JH, Schwab BW. 2004. Screening analysis of human pharmaceutical compounds in U.S. surface waters. Environmental Science and Technology 38: 838-49. – reference: Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K. 2011. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment 9: 53-60. DOI:10.1890/100014 – reference: Maidment DR. 2002. Arc Hydro: GIS for water resources. ESRI Press: Redlands, California. – reference: Vörösmarty CJ, Moore III B, Grace AL, Gildea MP, Melillo JM, Peterson BJ, Rastetter EB, Steudler PA . 1989. Continental scale models of water balance and fluvial transport: an application to South America. Global Biogeochemical Cycles 3: 241-265. – reference: Aspinall R, Pearson D. 2000. Integrated geographical assessment of environmental condition in water catchments: Linking landscape ecology, environmental modelling and GIS. Journal of Environmental Management 59: 299-319. DOI:10.1006/jema.2000.0372 – reference: Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT, Brakenridge GR, Day J, Vörösmarty CJ, Saito Y, Giosan L, Nicholls RJ. 2009. Sinking deltas due to human activities. Nature Geoscience 2: 681-686. DOI:10.1038/ngeo629 – reference: Döll P, Fiedler K, and Zhang J. 2009. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrology and Earth System Sciences Discussions 13: 2413-2432. – reference: Verzano K, Bärlund I, Flörke M, Lehner B, Kynast E, Voß F, Alcamo J. 2012. Modeling variable river flow velocity on continental scale: Current situation and climate change impacts in Europe. Journal of Hydrology 424-425: 238-251. DOI:10.1016/j.jhydrol.2012.01.005 – reference: Wisser D, Fekete BM, Vörösmarty CJ, Schumann AH. 2010. Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network-Hydrology (GTN-H). Hydrology and Earth System Sciences 14: 1-24. – reference: Beusen AHW, Bouwman AF, Dürr HH, Dekkers ALM, Hartmann J. 2009. Global patterns of dissolved silica export to the coastal zone: Results from a spatially explicit global model. Global Biogeochemical Cycles 23: 1-13. DOI:10.1029/2008GB003281 – reference: Coe MT. 2000. Modeling terrestrial hydrological systems at the continental scale: Testing the accuracy of an atmospheric GCM. Journal of Climate 13: 686-704. – reference: Siebert S, Döll P. 2010. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. Journal of Hydrology 384: 198-217. DOI:10.1016/j.jhydrol.2009.07.031 – reference: Lehner B, Verdin K, Jarvis A. 2008. New global hydrography derived from spaceborne elevation data. EOS, Transactions of the American Geophysical Union 89: 93-104. – reference: Ngo-Duc T, Oki T, Kanae S. 2007. A variable streamflow velocity method for global river routing model: model description and preliminary results. Hydrology and Earth System Sciences Discussions 4: 4389-4414. DOI:10.5194/hessd-4-4389-2007 – reference: Cote D, Kehler DG, Bourne C, Wiersma YF. 2009. A new measure of longitudinal connectivity for stream networks. Landscape Ecology 24: 101-113. – reference: Chapra SC. 1997. Surface water-quality modeling, Vol. 606, 560-576. McGraw-Hill: New York. – reference: Buser HR, Poiger T, Müller MD. 1998. Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: Rapid photodegradation in a lake. Environmental Science and Technology 32: 3449-3456. DOI:10.1021/es980301x – reference: Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130-137. – reference: Pistocchi A, Vizcaino P, Hauck M. 2009. A GIS model-based screening of potential contamination of soil and water by pyrethroids in Europe. Journal of Environmental Management 90: 3410-21. DOI:10.1016/j.jenvman.2009.05.020 – reference: MRC (Mekong River Commission). 2009. Hydropower Project Database. Mekong River Commission: Vientiane, Lao PDR. – reference: Siebert S, Döll P, Hoogeveen J, Faures J-M, Frenken K, Feick S. 2005. Development and validation of the global map of irrigation areas. Hydrology and Earth System Sciences 9: 535-547. – reference: Vieux BE, Needham S. 1993. Nonpoint-Pollution Model Sensitivity to Grid-Cell Size. Journal of Water Resources Planning and Management 119: 141-157. DOI:10.1061/(ASCE)0733-9496(1993)119:2(141) – reference: Ellis EC, Ramankutty N. 2008. Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment 6: 439-447. – reference: Arnell NW, Livermore MJL, Kovats S, Levy PE, Nicholls R, Parry ML, Gaffin SR. 2004. Climate and socio-economic scenarios for global-scale climate change impacts assessments: characterising the SRES storylines. Global Environmental Change 14: 3-20. DOI:10.1016/j.gloenvcha.2003.10.004 – reference: Oki T, Kanae S. 2006. Global Hydrological Cycles and World Water Resources. Science 313(5790): 1068-1072. – reference: Ahuja RK, Magnanti TL, Orlin JB. 1993. Network flows: theory, algorithms and applications. Prentice Hall: Englewood Cliffs, NJ. – reference: Loveland T, Reed B, Brown J, Ohlen D, Zhu Z, Yang L, Merchant J. 2000. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing 21: 1303-1330. – reference: Beighley RE, Eggert KG, Dunne T, He Y, Gummadi V, Verdin KL. 2009. Simulating hydrologic and hydraulic processes throughout the Amazon River Basin. Hydrological Processes 23: 1221-1235. DOI:10.1002/hyp.7252 – reference: Lassalle G, Crouzet P, Rochard E. 2009. Modelling the current distribution of European diadromous fishes: an approach integrating regional anthropogenic pressures. Freshwater Biology 54: 587-606. DOI:10.1111/j.1365-2427.2008.02135.x – reference: Mayorga E, Seitzinger SP, Harrison JA, Dumont E, Beusen AHW, Bouwman AF, Fekete B, Kroeze C, Van Drecht G. 2010. Global Nutrient Export from WaterSheds 2 (NEWS 2): Model development and implementation. Environmental Modelling and Software 25: 837-853. DOI:10.1016/j.envsoft.2010.01.007 – reference: Pringle C. 2003. What is hydrologic connectivity and why is it ecologically important? Hydrological Processes 17: 2685-2689. DOI:10.1002/hyp.5145 – reference: Graham ST, Famiglietti JS, Maidment DR. 1999. Five-Minute, 1/2°, and 1° Data Sets of Continental Watersheds and River Networks for Use in Regional and Global Hydrologic and Climate System Modeling Studies. Water Resources Research 35: 583-587. DOI:10.1029/1998WR900068 – reference: Kummu M, Lu XX, Wang JJ, Varis O. 2010. Basin-wide sediment trapping efficiency of emerging reservoirs along the Mekong. Geomorphology 119: 181-197. DOI:10.1016/j.geomorph.2010.03.018 – reference: Gong L, Widén-Nilsson E, Halldin S, Xu C-Y. 2009. Large-scale runoff routing with an aggregated network-response function. Journal of Hydrology 368: 237-250. DOI:10.1016/j.jhydrol.2009.02.007 – reference: Döll P, Kaspar F, Lehner B. 2003. A global hydrological model for deriving water availability indicators: model tuning and validation. Journal of Hydrology 270: 105-134. – reference: Monfreda C, Ramankutty N, Foley JA. 2008. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year. Global Biogeochemical Cycles, 22: 1-19. – reference: Cherkassky BV, Goldberg AV, Radzik T. 1996. Shortest paths algorithms: theory and experimental evaluation. Mathematical Programming 73: 129-174. – reference: Seyler F, Calmant S, da Silva JS, Moreira DM, Mercier F, Shum CK. 2012. From TOPEX/Poseidon to Jason-2/OSTM in the Amazon basin. Advances in Space Research, DOI: http://dx.doi.org/10.1016/j.asr.2012.11.002 – reference: Hanasaki N, Kanae S, Oki T. 2006. A reservoir operation scheme for global river routing models. Journal of Hydrology 327: 22-41. – reference: Feijtel T, Boeije G, Matthies M, Young A, Morris G, Gandolfi C, Hansen B, Fox K, Matthijs E, Koch V, Schroder R, Cassani G, Schowanek D, Rosenblom J, Holt M. 1998. Development of a geography-referenced regional exposure assessment tool for European rivers-GREAT-ER. Journal of Hazardous Materials 61: 59-65. DOI:10.1016/S0304-3894(98)00108-3 – reference: MacDonald GK, Bennett EM, Potter PA, Ramankutty N. 2011. Agronomic phosphorus imbalances across the world's croplands. Proceedings of the National Academy of Sciences of the United States of America 108: 3086-91. DOI:10.1073/pnas.1010808108 – reference: Ramankutty N, Foley JA. 1999. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochemical Cycles 13: 997-1027. – reference: Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Reidy Liermann C, Davies PM. 2010. Global threats to human water security and river biodiversity. Nature 467: 555-561. DOI:10.1038/nature09549 – reference: Allen PM, Arnold JG, Byars BW. 1994. Downstream channel geometry for use in planning-level models. Water Resources Bulletin 30: 663-671. – reference: FAO, IIASA, ISRIC, ISS-CAS, and JRC. 2012. Harmonized World Soil Database (version 1.2). FAO: Rome, Italy, and IIASA: Laxenburg, Austria. – reference: Fürst J, Hörhan T. 2009. Coding of watershed and river hierarchy to support GIS-based hydrological analyses at different scales. Computers and Geosciences 35: 688-696. DOI:10.1016/j.cageo.2008.04.007 – reference: Oki T, Sud YC. 1998. Design of Total Runoff Integrating Pathways (TRIP)-A Global River Channel Network. Earth Interactions 2: 1-37. DOI:10.1175/1087-3562(1998)002<0001:DOTRIP>2.3.CO;2 – reference: Pistocchi A, Sarigiannis DA, Vizcaino P. 2010. Spatially explicit multimedia fate models for pollutants in Europe: state of the art and perspectives. The Science of the Total Environment 408: 3817-30. DOI:10.1016/j.scitotenv.2009.10.046 – reference: David CH, Maidment DR, Niu G-Y, Yang Z-L, Habets F, Eijkhout V. 2011. River Network Routing on the NHDPlus Dataset. Journal of Hydrometeorology 12: 913-934. DOI:10.1175/2011JHM1345.1 – reference: Verdin KL, Verdin JP. 1999. A topological system for delineation and codification of the Earth's river basins. Journal of Hydrology 218: 1-12. DOI:10.1016/S0022-1694(99)00011-6 – reference: Yamazaki D, Oki T, Kanae S. 2009. Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map. Hydrology and Earth System Sciences 13: 2241-2251. DOI:10.5194/hess-13-2241-2009 – reference: Ganio LM, Torgersen CE, Gresswell RE. 2005. A geostatistical approach for describing spatial pattern in stream networks. Frontiers in Ecology and the Environment 3: 138-144. DOI:10.1890/1540-9295(2005)003[0138:AGAFDS]2.0.CO;2 – reference: Butkus SR, Welch EB, Horner RR, Spyridakis DE. 1988. Lake response modeling using available biologically phosphorus. Journal of the Water Pollution Control Federation 60: 1663-1669. – reference: Fekete B, Gibson J, Aggarwal LP, Vörösmarty CJ. 2006. Application of isotope tracers in continental scale hydrological modeling. Journal of Hydrology 330: 444-456. DOI:10.1016/j.jhydrol.2006.04.029 – reference: Lehner B, Döll P. 2004. Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296: 1-22. – reference: Vörösmarty CJ, Green P, Salisbury J, Lammers RB. 2000b. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 289(5477): 284-288. DOI:10.1126/science.289.5477.284 – reference: Fekete B, Vörösmarty CJ, Lammers RB. 2001. Scaling gridded river networks for macroscale hydrology: Development, analysis, and control of error. Water Resources 37: 1955-1967. – reference: Döll P, Lehner B. 2002. Validation of a new global 30-min drainage direction map. Journal of Hydrology 258: 214-231. DOI:10.1016/S0022-1694(01)00565-0 – reference: James WF, Richardson WB, Soballe DM. 2008. Effects of residence time on summer nitrate uptake in mississippi river flow-regulated backwaters. River Research and Applications 24: 1206-1217. DOI:10.1002/rra.1150 – reference: Hanasaki N, Inuzuka T, Kanae S, Oki T. 2010. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. Journal of Hydrology 384: 232-244. DOI:10.1016/j.jhydrol.2009.09.028 – reference: Alcamo J, Döll P, Henrichs T, Kaspar F, Lehner B, Rösch T, Siebert S. 2003. Development and testing of the WaterGAP 2 global model of water use and availability. Hydrological Sciences Journal 48: 317-337. DOI:10.1623/hysj.48.3.317.45290 – reference: Klein Goldewijk K, Beusen A, Van Drecht G, De Vos M. 2011. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecology and Biogeography 20: 73-86. DOI:10.1111/j.1466-8238.2010.00587.x – reference: Lowe WH, Likens GE, Power ME. 2010. Linking scales in stream ecology. BioScience 56: 591-597. DOI:10.1641/0006-3568(2006)56[591:LSISE]2.0.CO;2 – reference: Rost S, Gerten D, Bondeau A, Lucht W, Rohwer J, Schaphoff S. 2008. Agricultural green and blue water consumption and its influence on the global water system. Water Resources Research 44: 1-17. DOI:10.1029/2007WR006331 – reference: Gong L, Halldin S, Xu C-Y. 2011. Global-scale river routing - an efficient time-delay algorithm based on HydroSHEDS high-resolution hydrography. Hydrological Processes 25: 1114-1128. DOI:10.1002/hyp.7795 – reference: Wisser D, Frolking S, Douglas EM, Fekete BM, Vörösmarty CJ, Schumann AH. 2008. Global irrigation water demand: Variability and uncertainties arising from agricultural and climate data sets. Geophysical Research Letters 35. DOI:10.1029/2008GLO35296. – reference: Alvarez-Cobelas M, Sánchez-Carrillo S, Angeler DG, Sánchez-Andrés R. 2009. Phosphorus export from catchments: a global view. Journal of the North American Benthological Society 28: 805-820. DOI:10.1899/09-073.1 – reference: Lehner B, Liermann CR, Revenga C, Vörösmarty CJ, Fekete B, Crouzet P, Döll P, Endejan M, Frenken K, Magome J, Nilsson C, Robertson JC, Rödel R, Sindorf N, Wisser D. 2011. High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment 9: 494-502. DOI:10.1890/100125 – reference: Sahoo AK, Pan M, Troy TJ, Vinukollu RK, Sheffield J, Wood EF. 2011. Reconciling the global terrestrial water budget using satellite remote sensing. Remote Sensing of Environment 115: 1850-1865. DOI:10.1016/j.rse.2011.03.009 – reference: Maidment DR. 1993. Handbook of Hydrology. McGraw-Hill: New York. – reference: Whiteaker TL, Maidment DR, Goodall JL, Takamatsu M. 2006. Integrating Arc Hydro Features with a Schematic Network. Transactions in GIS 10: 219-237. DOI:10.1111/j.1467-9671.2006.00254.x – reference: Pistocchi A, Pennington D. 2006. European hydraulic geometries for continental scale environmental modelling. Journal of Hydrology 329: 553-567. DOI:10.1016/j.jhydrol.2006.03.009 – reference: Donner SD, Coe MT, Lenters JD, Twine TE, Foley JA. 2002. Modeling the impact of hydrological changes on nitrate transport in the Mississippi River Basin from 1955 to 1994. Global Biogeochemical Cycles 16: 1-19. DOI:10.1029/2001GB001396 – reference: Andersson E, Nilsson C, Johansson ME. 2000. Effects of river fragmentation on plant dispersal and riparian flora. Regulated Rivers: Research & Management 16: 83-89. – reference: Paiva RCD, Collischonn W, Tucci CEM. 2011. Large scale hydrologic and hydrodynamic modelling using limited data and a GIS based approach. Journal of Hydrology 406: 170-181. – reference: Haddeland I, Clark DB, Franssen W, Ludwig F, Voß F, Arnell NW, Bertrand N, Best M, Folwell S, Gerten D, Gomes S, Gosling SN, Hagemann S, Hanasaki N, Harding R, Heinke J, Kabat P, Koirala S, Oki T, Polcher J, Stacke T, Viterbo P, Weedon GP, Yeh P. 2011. Multimodel Estimate of the Global Terrestrial Water Balance: Setup and First Results. Journal of Hydrometeorology 12: 869-884. DOI:10.1175/2011JHM1324.1 – reference: Bunn SE, Arthington AH. 2002. Basic principles and consequences of altered hydrological regimes for aquatic biodiversity. Environmental Management 30: 492-507. – reference: Wang X, White-Hull C, Dyer S, Yang Y. 2000. GIS-ROUT: a river model for watershed planning. Environment and Planning B: Planning and Design 27: 231-246. DOI:10.1068/b2624 – reference: Yamazaki D, Kanae S, Kim H, Oki T. 2011. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resources Research 47: 1-21. DOI:10.1029/2010WR009726 – reference: Richter BD, Postel S, Revenga C, Scudder T, Lehner B, Churchill A, Chow M. 2010. Lost in development's shadow: The downstream human consequences of dams. Water Alternatives 3: 14-42. – reference: Vörösmarty CJ, Meybeck M, Fekete B, Sharma K, Green P, Syvitski JP. 2003. Anthropogenic sediment retention: major global impact from registered river impoundments. Global and Planetary Change 39: 169-190. DOI:10.1016/S0921-8181(03)00023-7 – reference: Hollister J, Milstead WB. 2010. Using GIS to estimate lake volume from limited data. Lake and Reservoir Management 26: 194-199. DOI:10.1080/07438141.2010.504321 – reference: Renssen H, Knoop JM. 2000. A global river routing network for use in hydrological modeling. Journal of Hydrology 230: 230-243. DOI:10.1016/S0022-1694(00)00178-5 – reference: Schneider C, Flörke M, Eisner S, Voss F. 2011. Large scale modelling of bankfull flow: an example for Europe. Journal of Hydrology 408: 235-245. – reference: Wood EF, Roundy JK, Troy TJ, van Beek LPH, Bierkens MFP, Blyth E, de Roo A, Döll P, Ek M, Famiglietti J, Gochis D, Van De Giesen N, Houser P, Jaffé PR, Kollet S, Lehner B, Lettenmaier DP, Peters-Lidard C, Sivapalan M, Sheffield J, Wade A, Whitehead P. 2011. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water. Water Resources Research 47: 1-10. DOI:10.1029/2010WR010090 – year: 2011 – volume: 25 start-page: 1114 year: 2011 end-page: 1128 article-title: Global‐scale river routing ‐ an efficient time‐delay algorithm based on HydroSHEDS high‐resolution hydrography publication-title: Hydrological Processes – volume: 368 start-page: 237 year: 2009 end-page: 250 article-title: Large‐scale runoff routing with an aggregated network‐response function publication-title: Journal of Hydrology – volume: 61 start-page: 59 year: 1998 end-page: 65 article-title: Development of a geography‐referenced regional exposure assessment tool for European rivers—GREAT‐ER publication-title: Journal of Hazardous Materials – volume: 436–437 start-page: 81 year: 2012 end-page: 91 article-title: Adjustment of a spaceborne DEM for use in floodplain hydrodynamic modelling publication-title: Journal of Hydrology – volume: 14 start-page: 3 year: 2004 end-page: 20 article-title: Climate and socio‐economic scenarios for global‐scale climate change impacts assessments: characterising the SRES storylines publication-title: Global Environmental Change – volume: 3 start-page: 138 year: 2005 end-page: 144 article-title: A geostatistical approach for describing spatial pattern in stream networks publication-title: Frontiers in Ecology and the Environment – volume: 2 start-page: 1 year: 1998 end-page: 37 article-title: Design of Total Runoff Integrating Pathways (TRIP)—A Global River Channel Network publication-title: Earth Interactions – volume: 28 start-page: 805 year: 2009 end-page: 820 article-title: Phosphorus export from catchments: a global view publication-title: Journal of the North American Benthological Society – volume: 39 start-page: 169 year: 2003 end-page: 190 article-title: Anthropogenic sediment retention: major global impact from registered river impoundments publication-title: Global and Planetary Change – volume: 27 start-page: 231 year: 2000 end-page: 246 article-title: GIS‐ROUT: a river model for watershed planning publication-title: Environment and Planning B: Planning and Design – volume: 73 start-page: 129 year: 1996 end-page: 174 article-title: Shortest paths algorithms: theory and experimental evaluation publication-title: Mathematical Programming – volume: 230 start-page: 230 year: 2000 end-page: 243 article-title: A global river routing network for use in hydrological modeling publication-title: Journal of Hydrology – year: 2008 – volume: 47 start-page: 1 year: 2011 end-page: 10 article-title: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water publication-title: Water Resources Research – volume: 408 start-page: 235 year: 2011 end-page: 245 article-title: Large scale modelling of bankfull flow: an example for Europe publication-title: Journal of Hydrology – volume: 16 start-page: 1 year: 2002 end-page: 19 article-title: Modeling the impact of hydrological changes on nitrate transport in the Mississippi River Basin from 1955 to 1994 publication-title: Global Biogeochemical Cycles – volume: 13 start-page: 2413 year: 2009 end-page: 2432 article-title: Global‐scale analysis of river flow alterations due to water withdrawals and reservoirs publication-title: Hydrology and Earth System Sciences Discussions – volume: 408 start-page: 3817 year: 2010 end-page: 30 article-title: Spatially explicit multimedia fate models for pollutants in Europe: state of the art and perspectives publication-title: The Science of the Total Environment – volume: 60 start-page: 1663 year: 1988 end-page: 1669 article-title: Lake response modeling using available biologically phosphorus publication-title: Journal of the Water Pollution Control Federation – year: 1993 – volume: 54 start-page: 587 year: 2009 end-page: 606 article-title: Modelling the current distribution of European diadromous fishes: an approach integrating regional anthropogenic pressures publication-title: Freshwater Biology – volume: 108 start-page: 3086 year: 2011 end-page: 91 article-title: Agronomic phosphorus imbalances across the world's croplands publication-title: Proceedings of the National Academy of Sciences of the United States of America – year: 2012 article-title: From TOPEX/Poseidon to Jason‐2/OSTM in the Amazon basin publication-title: Advances in Space Research – volume: 313 start-page: 1068 issue: 5790 year: 2006 end-page: 1072 article-title: Global Hydrological Cycles and World Water Resources publication-title: Science – volume: 47 start-page: 1 year: 2011 end-page: 21 article-title: A physically based description of floodplain inundation dynamics in a global river routing model publication-title: Water Resources Research – year: 2007 – volume: 9 start-page: 535 year: 2005 end-page: 547 article-title: Development and validation of the global map of irrigation areas publication-title: Hydrology and Earth System Sciences – volume: 119 start-page: 181 year: 2010 end-page: 197 article-title: Basin‐wide sediment trapping efficiency of emerging reservoirs along the Mekong publication-title: Geomorphology – volume: 37 start-page: 1955 year: 2001 end-page: 1967 article-title: Scaling gridded river networks for macroscale hydrology: Development, analysis, and control of error publication-title: Water Resources – volume: 21 start-page: 1303 year: 2000 end-page: 1330 article-title: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data publication-title: International Journal of Remote Sensing – volume: 26 start-page: 194 year: 2010 end-page: 199 article-title: Using GIS to estimate lake volume from limited data publication-title: Lake and Reservoir Management – volume: 296 start-page: 1 year: 2004 end-page: 22 article-title: Development and validation of a global database of lakes, reservoirs and wetlands publication-title: Journal of Hydrology – volume: 289 start-page: 284 issue: 5477 year: 2000b end-page: 288 article-title: Global Water Resources: Vulnerability from Climate Change and Population Growth publication-title: Science – volume: 35 start-page: 688 year: 2009 end-page: 696 article-title: Coding of watershed and river hierarchy to support GIS‐based hydrological analyses at different scales publication-title: Computers and Geosciences – volume: 4 start-page: 4389 year: 2007 end-page: 4414 article-title: A variable streamflow velocity method for global river routing model: model description and preliminary results publication-title: Hydrology and Earth System Sciences Discussions – volume: 23 start-page: 1221 year: 2009 end-page: 1235 article-title: Simulating hydrologic and hydraulic processes throughout the Amazon River Basin publication-title: Hydrological Processes – year: 2010 – volume: 12 start-page: 869 year: 2011 end-page: 884 article-title: Multimodel Estimate of the Global Terrestrial Water Balance: Setup and First Results publication-title: Journal of Hydrometeorology – volume: 406 start-page: 170 year: 2011 end-page: 181 article-title: Large scale hydrologic and hydrodynamic modelling using limited data and a GIS based approach publication-title: Journal of Hydrology – volume: 14 start-page: 1 year: 2010 end-page: 24 article-title: Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network‐Hydrology (GTN‐H) publication-title: Hydrology and Earth System Sciences – volume: 329 start-page: 553 year: 2006 end-page: 567 article-title: European hydraulic geometries for continental scale environmental modelling publication-title: Journal of Hydrology – volume: 384 start-page: 232 year: 2010 end-page: 244 article-title: An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model publication-title: Journal of Hydrology – year: 2002 – volume: 606 start-page: 560 year: 1997 end-page: 576 – volume: 25 start-page: 837 year: 2010 end-page: 853 article-title: Global Nutrient Export from WaterSheds 2 (NEWS 2): Model development and implementation publication-title: Environmental Modelling and Software – volume: 17 start-page: 2685 year: 2003 end-page: 2689 article-title: What is hydrologic connectivity and why is it ecologically important? publication-title: Hydrological Processes – volume: 35 start-page: 583 year: 1999 end-page: 587 article-title: Five‐Minute, 1/2°, and 1° Data Sets of Continental Watersheds and River Networks for Use in Regional and Global Hydrologic and Climate System Modeling Studies publication-title: Water Resources Research – volume: 89 start-page: 93 year: 2008 end-page: 104 article-title: New global hydrography derived from spaceborne elevation data publication-title: EOS, Transactions of the American Geophysical Union – year: 2009 – volume: 424–425 start-page: 238 year: 2012 end-page: 251 article-title: Modeling variable river flow velocity on continental scale: Current situation and climate change impacts in Europe publication-title: Journal of Hydrology – volume: 119 start-page: 141 year: 1993 end-page: 157 article-title: Nonpoint‐Pollution Model Sensitivity to Grid‐Cell Size publication-title: Journal of Water Resources Planning and Management – volume: 330 start-page: 444 year: 2006 end-page: 456 article-title: Application of isotope tracers in continental scale hydrological modeling publication-title: Journal of Hydrology – volume: 93 start-page: 91 year: 2009 end-page: 116 article-title: Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes publication-title: Biogeochemistry – volume: 384 start-page: 198 year: 2010 end-page: 217 article-title: Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation publication-title: Journal of Hydrology – volume: 270 start-page: 105 year: 2003 end-page: 134 article-title: A global hydrological model for deriving water availability indicators: model tuning and validation publication-title: Journal of Hydrology – volume: 38 start-page: 838 year: 2004 end-page: 49 article-title: Screening analysis of human pharmaceutical compounds in U.S. surface waters publication-title: Environmental Science and Technology – volume: 22 start-page: 1 year: 2008 end-page: 19 article-title: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year publication-title: Global Biogeochemical Cycles – volume: 115 start-page: 1850 year: 2011 end-page: 1865 article-title: Reconciling the global terrestrial water budget using satellite remote sensing publication-title: Remote Sensing of Environment – volume: 2 start-page: 681 year: 2009 end-page: 686 article-title: Sinking deltas due to human activities publication-title: Nature Geoscience – volume: 327 start-page: 22 year: 2006 end-page: 41 article-title: A reservoir operation scheme for global river routing models publication-title: Journal of Hydrology – volume: 13 start-page: 686 year: 2000 end-page: 704 article-title: Modeling terrestrial hydrological systems at the continental scale: Testing the accuracy of an atmospheric GCM publication-title: Journal of Climate – volume: 90 start-page: 3410 year: 2009 end-page: 21 article-title: A GIS model‐based screening of potential contamination of soil and water by pyrethroids in Europe publication-title: Journal of Environmental Management – volume: 3 start-page: 241 year: 1989 end-page: 265 article-title: Continental scale models of water balance and fluvial transport: an application to South America publication-title: Global Biogeochemical Cycles – volume: 13 start-page: 2241 year: 2009 end-page: 2251 article-title: Deriving a global river network map and its sub‐grid topographic characteristics from a fine‐resolution flow direction map publication-title: Hydrology and Earth System Sciences – volume: 3 start-page: 14 year: 2010 end-page: 42 article-title: Lost in development's shadow: The downstream human consequences of dams publication-title: Water Alternatives – volume: 56 start-page: 591 year: 2010 end-page: 597 article-title: Linking scales in stream ecology publication-title: BioScience – volume: 59 start-page: 299 year: 2000 end-page: 319 article-title: Integrated geographical assessment of environmental condition in water catchments: Linking landscape ecology, environmental modelling and GIS publication-title: Journal of Environmental Management – volume: 9 start-page: 53 year: 2011 end-page: 60 article-title: Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere publication-title: Frontiers in Ecology and the Environment – volume: 12 start-page: 913 year: 2011 end-page: 934 article-title: River Network Routing on the NHDPlus Dataset publication-title: Journal of Hydrometeorology – volume: 30 start-page: 663 year: 1994 end-page: 671 article-title: Downstream channel geometry for use in planning‐level models publication-title: Water Resources Bulletin – volume: 48 start-page: 317 year: 2003 end-page: 337 article-title: Development and testing of the WaterGAP 2 global model of water use and availability publication-title: Hydrological Sciences Journal – volume: 369 start-page: 165 year: 2009 end-page: 174 article-title: The influence of historical and potential future deforestation on the stream flow of the Amazon River ‐ Land surface processes and atmospheric feedbacks publication-title: Journal of Hydrology – volume: 30 start-page: 492 year: 2002 end-page: 507 article-title: Basic principles and consequences of altered hydrological regimes for aquatic biodiversity publication-title: Environmental Management – volume: 6 start-page: 439 year: 2008 end-page: 447 article-title: Putting people in the map: anthropogenic biomes of the world publication-title: Frontiers in Ecology and the Environment – volume: 44 start-page: 1 year: 2008 end-page: 17 article-title: Agricultural green and blue water consumption and its influence on the global water system publication-title: Water Resources Research – volume: 342 start-page: 179 year: 2010 end-page: 188 article-title: Global land water storage change from GRACE over 2002–2009; Inference on sea level publication-title: Comptes Rendus Geoscience – volume: 37 start-page: 130 year: 1980 end-page: 137 article-title: The river continuum concept publication-title: Canadian Journal of Fisheries and Aquatic Sciences – year: 2003 – volume: 20 start-page: 73 year: 2011 end-page: 86 article-title: The HYDE 3.1 spatially explicit database of human‐induced global land‐use change over the past 12,000 years publication-title: Global Ecology and Biogeography – year: 2000 – volume: 16 start-page: 83 year: 2000 end-page: 89 article-title: Effects of river fragmentation on plant dispersal and riparian flora publication-title: Regulated Rivers: Research & Management – year: 2012 – volume: 9 start-page: 494 year: 2011 end-page: 502 article-title: High‐resolution mapping of the world's reservoirs and dams for sustainable river‐flow management publication-title: Frontiers in Ecology and the Environment – volume: 467 start-page: 555 year: 2010 end-page: 561 article-title: Global threats to human water security and river biodiversity publication-title: Nature – volume: 10 start-page: 219 year: 2006 end-page: 237 article-title: Integrating Arc Hydro Features with a Schematic Network publication-title: Transactions in GIS – volume: 258 start-page: 214 year: 2002 end-page: 231 article-title: Validation of a new global 30‐min drainage direction map publication-title: Journal of Hydrology – volume: 218 start-page: 1 year: 1999 end-page: 12 article-title: A topological system for delineation and codification of the Earth's river basins publication-title: Journal of Hydrology – volume: 24 start-page: 101 year: 2009 end-page: 113 article-title: A new measure of longitudinal connectivity for stream networks publication-title: Landscape Ecology – volume: 24 start-page: 1206 year: 2008 end-page: 1217 article-title: Effects of residence time on summer nitrate uptake in mississippi river flow‐regulated backwaters publication-title: River Research and Applications – volume: 23 start-page: 1 year: 2009 end-page: 13 article-title: Global patterns of dissolved silica export to the coastal zone: Results from a spatially explicit global model publication-title: Global Biogeochemical Cycles – volume: 13 start-page: 997 year: 1999 end-page: 1027 article-title: Estimating historical changes in global land cover: Croplands from 1700 to 1992 publication-title: Global Biogeochemical Cycles – volume: 35 year: 2008 article-title: Global irrigation water demand: Variability and uncertainties arising from agricultural and climate data sets publication-title: Geophysical Research Letters – volume: 24 start-page: GB1011 year: 2010 article-title: MIRCA2000 – Global monthly irrigated and rainfed crop areas around the year 2000: A new high‐resolution data set for agricultural and hydrological modeling publication-title: Global Biogeochemical Cycles – volume: 112 start-page: 1 year: 2007 end-page: 13 article-title: Global inundation dynamics inferred from multiple satellite observations, 1993–2000 publication-title: Journal of Geophysical Research – volume: 32 start-page: 3449 year: 1998 end-page: 3456 article-title: Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: Rapid photodegradation in a lake publication-title: Environmental Science and Technology – start-page: 407 year: 2010 end-page: 414 – volume: 237 start-page: 17 year: 2000a end-page: 39 article-title: Geomorphometric attributes of the global system of rivers at 30‐minute spatial resolution publication-title: Journal of Hydrology – ident: e_1_2_9_26_1 doi: 10.1016/S0022-1694(02)00283-4 – ident: e_1_2_9_28_1 doi: 10.1029/2001GB001396 – ident: e_1_2_9_68_1 doi: 10.1016/j.jenvman.2009.05.020 – ident: e_1_2_9_70_1 doi: 10.1029/2008GB003435 – ident: e_1_2_9_36_1 doi: 10.1007/978‐3‐642‐10228‐8_35 – ident: e_1_2_9_78_1 doi: 10.1016/j.jhydrol.2011.08.004 – ident: e_1_2_9_41_1 doi: 10.1029/1998WR900068 – volume-title: Handbook of Hydrology year: 1993 ident: e_1_2_9_57_1 – ident: e_1_2_9_99_1 doi: 10.5194/hess‐13‐2241‐2009 – ident: e_1_2_9_45_1 doi: 10.1080/07438141.2010.504321 – ident: e_1_2_9_96_1 doi: 10.1029/2008GLO35296 – ident: e_1_2_9_8_1 doi: 10.1002/(SICI)1099-1646(200001/02)16:1<83::AID-RRR567>3.0.CO;2-T – ident: e_1_2_9_39_1 doi: 10.1016/j.jhydrol.2009.02.007 – ident: e_1_2_9_95_1 doi: 10.1111/j.1467‐9671.2006.00254.x – volume-title: Network flows: theory, algorithms and applications year: 1993 ident: e_1_2_9_2_1 – ident: e_1_2_9_65_1 doi: 10.1175/1087‐3562(1998)002<0001:DOTRIP>2.3.CO;2 – ident: e_1_2_9_98_1 doi: 10.1029/2010WR010090 – ident: e_1_2_9_91_1 doi: 10.1126/science.289.5477.284 – ident: e_1_2_9_13_1 doi: 10.1002/hyp.7252 – ident: e_1_2_9_76_1 doi: 10.1029/2007WR006331 – ident: e_1_2_9_17_1 doi: 10.1021/es980301x – ident: e_1_2_9_84_1 doi: 10.1139/f80-017 – ident: e_1_2_9_21_1 doi: 10.1175/1520-0442(2000)013<0686:MTHSAT>2.0.CO;2 – ident: e_1_2_9_24_1 doi: 10.1175/2011JHM1345.1 – ident: e_1_2_9_87_1 doi: 10.1061/(ASCE)0733‐9496(1993)119:2(141 – ident: e_1_2_9_79_1 doi: http://dx.doi.org/10.1016/j.asr.2012.11.002 – ident: e_1_2_9_31_1 – ident: e_1_2_9_90_1 doi: 10.1016/S0022-1694(00)00282-1 – ident: e_1_2_9_35_1 doi: 10.1016/j.jhydrol.2006.04.029 – ident: e_1_2_9_9_1 doi: 10.1016/j.gloenvcha.2003.10.004 – ident: e_1_2_9_62_1 – ident: e_1_2_9_29_1 doi: 10.1890/070062 – ident: e_1_2_9_47_1 doi: 10.1111/j.1466‐8238.2010.00587.x – ident: e_1_2_9_73_1 doi: 10.1029/1999GB900046 – ident: e_1_2_9_59_1 doi: 10.1016/j.envsoft.2010.01.007 – ident: e_1_2_9_66_1 doi: 10.1016/j.jhydrol.2011.06.007 – ident: e_1_2_9_71_1 doi: 10.1029/2006JD007847 – start-page: 560 volume-title: Surface water‐quality modeling year: 1997 ident: e_1_2_9_19_1 – ident: e_1_2_9_42_1 doi: 10.1175/2011JHM1324.1 – ident: e_1_2_9_94_1 doi: 10.1068/b2624 – ident: e_1_2_9_48_1 doi: 10.1016/j.geomorph.2010.03.018 – volume: 60 start-page: 1663 year: 1988 ident: e_1_2_9_18_1 article-title: Lake response modeling using available biologically phosphorus publication-title: Journal of the Water Pollution Control Federation – volume: 37 start-page: 1955 year: 2001 ident: e_1_2_9_34_1 article-title: Scaling gridded river networks for macroscale hydrology: Development, analysis, and control of error publication-title: Water Resources doi: 10.1029/2001WR900024 – ident: e_1_2_9_7_1 doi: 10.1021/es034430b – ident: e_1_2_9_3_1 doi: 10.1623/hysj.48.3.317.45290 – ident: e_1_2_9_22_1 doi: 10.1016/j.jhydrol.2009.02.043 – ident: e_1_2_9_85_1 doi: 10.1016/S0022‐1694(99)00011‐6 – ident: e_1_2_9_5_1 doi: 10.1111/j.1752-1688.1994.tb03321.x – ident: e_1_2_9_77_1 doi: 10.1016/j.rse.2011.03.009 – ident: e_1_2_9_92_1 doi: 10.1016/S0921‐8181(03)00023‐7 – ident: e_1_2_9_69_1 doi: 10.1016/j.scitotenv.2009.10.046 – volume-title: Harmonized World Soil Database (version 1.2) year: 2012 ident: e_1_2_9_32_1 – ident: e_1_2_9_15_1 – ident: e_1_2_9_23_1 doi: 10.1007/s10980-008-9283-y – ident: e_1_2_9_43_1 doi: 10.1016/j.jhydrol.2005.11.011 – ident: e_1_2_9_44_1 doi: 10.1016/j.jhydrol.2009.09.028 – ident: e_1_2_9_38_1 doi: 10.1890/1540‐9295(2005)003[0138:AGAFDS]2.0.CO;2 – ident: e_1_2_9_101_1 doi: 10.1016/j.jhydrol.2012.02.045 – ident: e_1_2_9_50_1 doi: 10.1016/j.jhydrol.2004.03.028 – ident: e_1_2_9_93_1 doi: 10.1038/nature09549 – ident: e_1_2_9_25_1 doi: 10.1016/S0022‐1694(01)00565‐0 – ident: e_1_2_9_88_1 – ident: e_1_2_9_51_1 doi: 10.1029/2008EO100001 – ident: e_1_2_9_54_1 doi: 10.1080/014311600210191 – ident: e_1_2_9_37_1 doi: 10.1016/j.cageo.2008.04.007 – volume: 3 start-page: 14 year: 2010 ident: e_1_2_9_75_1 article-title: Lost in development's shadow: The downstream human consequences of dams publication-title: Water Alternatives – volume-title: Hydropower Project Database year: 2009 ident: e_1_2_9_61_1 – ident: e_1_2_9_97_1 doi: 10.5194/hess-14-1-2010 – ident: e_1_2_9_100_1 doi: 10.1029/2010WR009726 – ident: e_1_2_9_86_1 doi: 10.1016/j.jhydrol.2012.01.005 – ident: e_1_2_9_72_1 doi: 10.1002/hyp.5145 – ident: e_1_2_9_6_1 doi: 10.1899/09‐073.1 – ident: e_1_2_9_16_1 doi: 10.1007/s00267-002-2737-0 – ident: e_1_2_9_64_1 doi: 10.1126/science.1128845 – ident: e_1_2_9_30_1 – ident: e_1_2_9_10_1 doi: 10.1006/jema.2000.0372 – ident: e_1_2_9_74_1 doi: 10.1016/S0022‐1694(00)00178‐5 – ident: e_1_2_9_63_1 doi: 10.5194/hessd‐4‐4389‐2007 – ident: e_1_2_9_12_1 doi: 10.1890/100014 – ident: e_1_2_9_14_1 doi: 10.1029/2008GB003281 – ident: e_1_2_9_11_1 – ident: e_1_2_9_40_1 doi: 10.1002/hyp.7795 – ident: e_1_2_9_52_1 doi: 10.1890/100125 – ident: e_1_2_9_46_1 doi: 10.1002/rra.1150 – ident: e_1_2_9_60_1 doi: 10.1029/2007GB002947 – ident: e_1_2_9_27_1 doi: 10.5194/hess-13-2413-2009 – ident: e_1_2_9_67_1 doi: 10.1016/j.jhydrol.2006.03.009 – ident: e_1_2_9_56_1 doi: 10.1073/pnas.1010808108 – ident: e_1_2_9_80_1 doi: 10.1016/j.jhydrol.2009.07.031 – ident: e_1_2_9_81_1 doi: 10.5194/hess-9-535-2005 – ident: e_1_2_9_49_1 doi: 10.1111/j.1365‐2427.2008.02135.x – ident: e_1_2_9_4_1 doi: 10.1007/s10533‐008‐9274‐8 – ident: e_1_2_9_53_1 doi: 10.1016/j.crte.2009.12.004 – volume-title: Arc Hydro: GIS for water resources year: 2002 ident: e_1_2_9_58_1 – ident: e_1_2_9_55_1 doi: 10.1641/0006‐3568(2006)56[591:LSISE]2.0.CO;2 – ident: e_1_2_9_83_1 – ident: e_1_2_9_33_1 doi: 10.1016/S0304‐3894(98)00108‐3 – ident: e_1_2_9_82_1 doi: 10.1038/ngeo629 – ident: e_1_2_9_89_1 doi: 10.1029/GB003i003p00241 – ident: e_1_2_9_20_1 doi: 10.1007/BF02592101 |
| SSID | ssj0004080 |
| Score | 2.623898 |
| Snippet | Despite significant recent advancements, global hydrological models and their input databases still show limited capabilities in supporting many spatially... |
| SourceID | crossref wiley istex |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 2171 |
| SubjectTerms | Geographic Information Systems global hydrography hydrological connectivity large-scale hydrological modeling river network routing |
| Title | Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems |
| URI | https://api.istex.fr/ark:/67375/WNG-VR13B1FR-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.9740 |
| Volume | 27 |
| WOSCitedRecordID | wos000325218100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-1085 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004080 issn: 0885-6087 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7SCnrxLb6JIPYU3U02-_Dmq3oopRTr47RsNwkVZSu79dF_byabbSkoCJ72sJPdMJNJZsI33yB0JFwm_FAEJE2UQzxJXaK9yCGhnzJf58863zaFwq2g3Q4fH6OORVVCLUzJDzG5cAPPMPs1OHjSL06npKGD8duJDoZ1ul6netnyGqpfdZu91rQq0jF907QbceI7YVBRzzr0tBo7cxjVQa9fs0GqOWWay_-Z3wpasrElPi8Xwyqak9kaWrBtzgfjdfRZMvzjHMAYeDAWuX2Fk0zgrESE43z4DljoMwwnHMwDA4zUinziioVcFng0xIaeFusoEhvu1UaBXwFbbn9R8kQXG6jXvL67vCW28wJJdDjnkCRxacqh5lW6kSf6AU8V5cIJJQWbJkx5OvKRVApfJ0RRyiKWKun1FfWE1Fs520S1bJjJLYRFpPQAGnnQ0UMK1XcZV77OSgMqFOdsGzUqE8SppSWH7hivcUmoTGOtyBgUuY0OJ5JvJRXHDzLHxooTgSR_AehawOOH9k1833XZhdvsxp4WNMb79Uvx7VMHnjt_FdxFi9S0ygiIy_dQbZS_y300n36Mnov8wC7ObyQG6vk |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELcQnQQvgw0Q3_MkBE-GxI7zMZ42ttJppUIVn09WGtvqBEqrtIX1v-fOSYqQmITEUx5yTqz78N1Zd78jZE_7QoexjliWWo8FhvsMrMhjcZiJEPJnyLddo3A76nTim5vkfI4c170wJT7E7MINLcOd12jgeCF99Iwa2p8ODyEahny9EYAWgXo3fnabl-3ntkjPDU4DO5Is9OKoxp71-FG99oU3aiBj_72MUp2baS69a4PL5GMVXdLvpTp8InMm_0wWqkHn_ekKeSwx_mmB5Ri0P9VF9YqmuaZ5WRNOi8EEq6G_UfRxuBGKhaQVySOtccjNiI4H1AHUUogjqUNfPRjRe6wur35RIkWPVsll89fFSYtVsxdYCgGdx9LU55nErlfjJ4HuRTKzXGovNhylmgobQOxjuNEhpERJJhKRWRP0LA-0gcNcrJH5fJCbdUJ1YmEBTwKc6WG07flC2hDy0ohrK6XYIAe1DFRWAZPjfIx7VUIqcwWMVMjIDfJ1RjkswTheodl3YpwRpMUdFq9FUl13TtVV1xc__GZXBUDopPffL6nW7Tk-N99K-IUstC7O2qr9u_NniyxyNzgjYr7cJvPjYmJ2yIfsYfx3VOxWmvoELg_u6Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-hFg1eNjaYVgbMk6bxZEjsOB_sicEyplVVVY2vJyuNbRWB0iptx_rfz-ckRUhDQtpTHnJOrDuffWfd_X4An5TPVRiriOaZ8WigmU-tF3k0DnMe2vzZ5tuuUbgb9Xrx1VXSX4EvTS9MhQ-xvHBDz3D7NTq4nihz-IAaOlpMDmw0bPP1doAcMi1onw7S8-5DW6TniNOsHwkaenHUYM967LAZ--g0aqNi_zyOUt0xk776rwluwMs6uiTH1XJ4DSu6eANrNdH5aLEJ9xXGPymxHIOMFqqsX5GsUKSoasJJOZ5jNfQRwTMOJ0KwkLQWuScNDrmektmYOIBaYuNI4tBX96fkDqvL619USNHTLThPv_06OaM19wLNbEDn0SzzWS6w61X7SaCGkcgNE8qLNUOrZtwENvbRTKvQpkRJzhOeGx0MDQuUtps5fwutYlzod0BUYuwAlgTI6aGVGfpcmNDmpRFTRgjegf3GBjKvgcmRH-NOVpDKTFpFSlRkBz4uJScVGMc_ZD47My4FsvIWi9ciIS973-XFwOdf_XQgAyvorPfkl-TZdR-f288V_AAv-qep7P7o_XwP68zxZkTUFzvQmpVzvQur-e_ZzbTcqxfqX9Nx7mQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+river+hydrography+and+network+routing%3A+baseline+data+and+new+approaches+to+study+the+world%27s+large+river+systems&rft.jtitle=Hydrological+processes&rft.au=Lehner%2C+Bernhard&rft.au=Grill%2C+G%C3%BCnther&rft.date=2013-07-15&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0885-6087&rft.eissn=1099-1085&rft.volume=27&rft.issue=15&rft.spage=2171&rft.epage=2186&rft_id=info:doi/10.1002%2Fhyp.9740&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_VR13B1FR_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon |