Head-Pose Invariant Facial Expression Recognition Using Convolutional Neural Networks

Automatic face analysis has to cope with pose and lighting variations. Especially pose variations are difficult to tackle and many face analysis methods require the use of sophisticated normalization and initialization procedures. We propose a data-driven face analysis approach that is not only capa...

Full description

Saved in:
Bibliographic Details
Published in:Multimodal Interfaces: Proceedings of the International Conference on Multimodal Interfaces (4th: 2002: Pittsburgh, PA) p. 529
Main Author: Fasel, Beat
Format: Conference Proceeding
Language:English
Published: Washington, DC, USA IEEE Computer Society 14.10.2002
IEEE
Series:ACM Conferences
Subjects:
ISBN:9780769518343, 0769518346
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Automatic face analysis has to cope with pose and lighting variations. Especially pose variations are difficult to tackle and many face analysis methods require the use of sophisticated normalization and initialization procedures. We propose a data-driven face analysis approach that is not only capable of extracting features relevant to a given face analysis task, but is also more robust with regard to face location changes and scale variations when compared to classical methods such as e.g. MLPs. Our approach is based on convolutional neural networks that use multi-scale feature extractors, which allow for improved facial expression recognition results with faces subject to in-plane pose variations.
AbstractList Automatic face analysis has to cope with pose and lighting variations. Especially pose variations are difficult to tackle and many face analysis methods require the use of sophisticated normalization and initialization procedures. We propose a data-driven face analysis approach that is not only capable of extracting features relevant to a given face analysis task, but is also more robust with regard to face location changes and scale variations when compared to classical methods such as e.g. MLPs. Our approach is based on convolutional neural networks that use multi-scale feature extractors, which allow for improved facial expression recognition results with faces subject to in-plane pose variations.
Automatic face analysis has to cope with pose and lighting variations. Pose variations are particularly difficult to tackle and many face analysis methods require the use of sophisticated normalization and initialization procedures. We propose a data-driven face analysis approach that is not only capable of extracting features relevant to a given face analysis task, but is also more robust with regard to face location changes and scale variations when compared to classical methods such as MLPs. Our approach is based on convolutional neural networks that use multi-scale feature extractors, which allow for improved facial expression recognition results with faces subject to in-plane pose variations.
Author Fasel, Beat
Author_xml – sequence: 1
  givenname: Beat
  surname: Fasel
  fullname: Fasel, Beat
BookMark eNqNkMtOwzAQRS0BElD6AYhNViyQUvyMkyWKKI1UHkJ0bTnOtDJN7RInBf6ehHbBktncmblHo9E9R8fOO0DokuAJITi7LfLHYkIxpv2YSCzIERpnMsUyyQRJGWenaBzCO-6LC4JTcoYWM9BV_OIDRIXb6cZq10ZTbayuo_uvbQMhWO-iVzB-5Ww79Itg3SrKvdv5uhs2PfoEXfMr7adv1uECnSx1HWB80BFaTO_f8lk8f34o8rt5rBkVbWwoFZUBITMjuZAlTnkGIktkYnDGgSQ4EVKkwGmaAAheUZaZlJGlrvrveclG6Hp_d9v4jw5CqzY2GKhr7cB3QTFCCSdS9uDVHrQAoLaN3ejmWx1S6t2bvavNRpXer4MiWA2RqiFSNUT6B8b_hlXZWFiyHw6keJ8
ContentType Conference Proceeding
Copyright Copyright (c) 2002 Institute of Electrical and Electronics Engineers, Inc. All rights reserved.
Copyright_xml – notice: Copyright (c) 2002 Institute of Electrical and Electronics Engineers, Inc. All rights reserved.
DBID 6IE
6IL
CBEJK
RIE
RIL
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/ICMI.2002.1167051
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 529
ExternalDocumentID 1167051
Genre Conference Paper
GroupedDBID 6IE
6IK
6IL
AAJGR
AAVQY
ACM
ADPZR
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
GUFHI
OCL
RIB
RIC
RIE
RIL
AAWTH
LHSKQ
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-a325t-c225dce579c7457b0849e59676c094e16065758e4286ee54d239c831fad1084b3
IEDL.DBID RIE
ISBN 9780769518343
0769518346
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000179248300086&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jul 10 23:04:14 EDT 2025
Tue Aug 26 18:27:22 EDT 2025
Wed Jan 31 06:49:20 EST 2024
Wed Jan 31 06:45:44 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a325t-c225dce579c7457b0849e59676c094e16065758e4286ee54d239c831fad1084b3
Notes SourceType-Conference Papers & Proceedings-1
ObjectType-Conference Paper-1
content type line 25
OpenAccessLink http://infoscience.epfl.ch/record/82818
PQID 31214177
PQPubID 23500
PageCount 1
ParticipantIDs acm_books_10_1109_ICMI_2002_1167051
acm_books_10_1109_ICMI_2002_1167051_brief
proquest_miscellaneous_31214177
ieee_primary_1167051
PublicationCentury 2000
PublicationDate 20021014
20020000
PublicationDateYYYYMMDD 2002-10-14
2002-01-01
PublicationDate_xml – month: 10
  year: 2002
  text: 20021014
  day: 14
PublicationDecade 2000
PublicationPlace Washington, DC, USA
PublicationPlace_xml – name: Washington, DC, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle Multimodal Interfaces: Proceedings of the International Conference on Multimodal Interfaces (4th: 2002: Pittsburgh, PA)
PublicationTitleAbbrev ICMI
PublicationYear 2002
Publisher IEEE Computer Society
IEEE
Publisher_xml – name: IEEE Computer Society
– name: IEEE
SSID ssj0000451081
Score 1.4406285
Snippet Automatic face analysis has to cope with pose and lighting variations. Especially pose variations are difficult to tackle and many face analysis methods...
Automatic face analysis has to cope with pose and lighting variations. Pose variations are particularly difficult to tackle and many face analysis methods...
SourceID proquest
ieee
acm
SourceType Aggregation Database
Publisher
StartPage 529
SubjectTerms Automatic testing
Character recognition
Computing methodologies
Computing methodologies -- Artificial intelligence
Computing methodologies -- Artificial intelligence -- Computer vision
Computing methodologies -- Artificial intelligence -- Computer vision -- Computer vision problems
Computing methodologies -- Artificial intelligence -- Computer vision -- Computer vision problems -- Object recognition
Computing methodologies -- Machine learning
Computing methodologies -- Machine learning -- Machine learning approaches
Computing methodologies -- Machine learning -- Machine learning approaches -- Neural networks
Convolution
Data analysis
Face recognition
Feature extraction
Neural networks
Neurons
Performance analysis
Robustness
Title Head-Pose Invariant Facial Expression Recognition Using Convolutional Neural Networks
URI https://ieeexplore.ieee.org/document/1167051
https://www.proquest.com/docview/31214177
WOSCitedRecordID wos000179248300086&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1NT8IwtEHiwRMqGPFziV5MHHRrt7ZnIoGDhIMk3JatfRgODsKA3-9rN8ZBD3pa13Tt8l7b9_0eIc-BQTpiIu7HmkqfG5X5MqXMx744FCZiQMtiE2IykfO5mjbIax0LAwDO-Qx6tuls-Wald1ZV1rc2A2rjpU-EEGWsVq1PsXlSkLyVkjmyDZLxuEqwc3hnlVUzoKo_HryPnYNCr5rUUif9VdVY-XExO2ozbP3vP89J5xi2501rgnRBGpBfktahboNXHeM2mY0Qsf56VYC3zPcoLCN0vUVqleceLld6xuZe7VuEbese_-lZF_Vqq-JQmwrTPZwjedEhs-Hbx2DkV-UV_JSF0dbXeJSNhkgoLXgkMiq5gkjFAtGmOAQo2iAvJwEFlBgg4iZkSksWLFKDkOYZuyLNfJXDNfHwkggZ9mslOeIbFHIeIAUYZEi0MLRLnhC4iZUbisSJHVQlFgW2CmaYVPDqkpc_jEqyzRIWXdK2cE_WZU6O4xSPB8QleE6s8SPNYbUrEhaEAQ-EuPn9w1ty5uq8OOXKHWluNzu4J6d6v10Wmwe31b4B8gfLig
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR27TsMw8IQACSbeojwjwYJEaBI7sT1XoFZAxUClblZqX1EHkqpp-_2cnbQMMMAUx3Ls6M72ve8AbmNLdMSmPMxMJENu1SiUecRC6ssSYVOGUV1sQvT7cjhUbxtwv46FQUTvfIYPrult-bY0C6cqazubQeTipbdSzpO4jtZaa1RcphQicLVsToyDZDxrUuys3llj14wj1e51XnveReGhmdbRJ_PZVFn5cTV7evO0978_3Yfj78C94G1Nkg5gA4tD2FtVbgiag3wEgy6hNpyWFQaTYkniMsE3GOdOfR7QcrVvbBGsvYuo7RzkPwLnpN5sVhrqkmH6h3clr45h8PT43umGTYGFMGdJOg8NHWZrMBXKCJ6KUSS5wlRlghCnOMYk3BA3J5FElAwx5TZhykgWj3NLkOYjdgKbRVngKQR0TSSM-o2SnDCOingPlAItsSRG2KgFNwRc7SSHSnvBI1LaocDVwUx0A68W3P1hlB7NJjhuwZGDu57WWTm-p7heIU7TSXHmj7zAclFpFicxj4U4-_3Da9jpvr--6Jde__kcdn3VF69quYDN-WyBl7BtlvNJNbvy2-4Lt1HO0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+4th+IEEE+International+Conference+on+Multimodal+Interfaces&rft.atitle=Head-Pose+Invariant+Facial+Expression+Recognition+Using+Convolutional+Neural+Networks&rft.au=Fasel%2C+Beat&rft.series=ACM+Conferences&rft.date=2002-10-14&rft.pub=IEEE+Computer+Society&rft.isbn=9780769518343&rft.spage=529&rft.epage=529&rft_id=info:doi/10.1109%2FICMI.2002.1167051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769518343/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769518343/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769518343/sc.gif&client=summon&freeimage=true