Head-Pose Invariant Facial Expression Recognition Using Convolutional Neural Networks
Automatic face analysis has to cope with pose and lighting variations. Especially pose variations are difficult to tackle and many face analysis methods require the use of sophisticated normalization and initialization procedures. We propose a data-driven face analysis approach that is not only capa...
Uloženo v:
| Vydáno v: | Multimodal Interfaces: Proceedings of the International Conference on Multimodal Interfaces (4th: 2002: Pittsburgh, PA) s. 529 |
|---|---|
| Hlavní autor: | |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
Washington, DC, USA
IEEE Computer Society
14.10.2002
IEEE |
| Edice: | ACM Conferences |
| Témata: | |
| ISBN: | 9780769518343, 0769518346 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Automatic face analysis has to cope with pose and lighting variations. Especially pose variations are difficult to tackle and many face analysis methods require the use of sophisticated normalization and initialization procedures. We propose a data-driven face analysis approach that is not only capable of extracting features relevant to a given face analysis task, but is also more robust with regard to face location changes and scale variations when compared to classical methods such as e.g. MLPs. Our approach is based on convolutional neural networks that use multi-scale feature extractors, which allow for improved facial expression recognition results with faces subject to in-plane pose variations. |
|---|---|
| AbstractList | Automatic face analysis has to cope with pose and lighting variations. Especially pose variations are difficult to tackle and many face analysis methods require the use of sophisticated normalization and initialization procedures. We propose a data-driven face analysis approach that is not only capable of extracting features relevant to a given face analysis task, but is also more robust with regard to face location changes and scale variations when compared to classical methods such as e.g. MLPs. Our approach is based on convolutional neural networks that use multi-scale feature extractors, which allow for improved facial expression recognition results with faces subject to in-plane pose variations. Automatic face analysis has to cope with pose and lighting variations. Pose variations are particularly difficult to tackle and many face analysis methods require the use of sophisticated normalization and initialization procedures. We propose a data-driven face analysis approach that is not only capable of extracting features relevant to a given face analysis task, but is also more robust with regard to face location changes and scale variations when compared to classical methods such as MLPs. Our approach is based on convolutional neural networks that use multi-scale feature extractors, which allow for improved facial expression recognition results with faces subject to in-plane pose variations. |
| Author | Fasel, Beat |
| Author_xml | – sequence: 1 givenname: Beat surname: Fasel fullname: Fasel, Beat |
| BookMark | eNqNkMtOwzAQRS0BElD6AYhNViyQUvyMkyWKKI1UHkJ0bTnOtDJN7RInBf6ehHbBktncmblHo9E9R8fOO0DokuAJITi7LfLHYkIxpv2YSCzIERpnMsUyyQRJGWenaBzCO-6LC4JTcoYWM9BV_OIDRIXb6cZq10ZTbayuo_uvbQMhWO-iVzB-5Ww79Itg3SrKvdv5uhs2PfoEXfMr7adv1uECnSx1HWB80BFaTO_f8lk8f34o8rt5rBkVbWwoFZUBITMjuZAlTnkGIktkYnDGgSQ4EVKkwGmaAAheUZaZlJGlrvrveclG6Hp_d9v4jw5CqzY2GKhr7cB3QTFCCSdS9uDVHrQAoLaN3ejmWx1S6t2bvavNRpXer4MiWA2RqiFSNUT6B8b_hlXZWFiyHw6keJ8 |
| ContentType | Conference Proceeding |
| Copyright | Copyright (c) 2002 Institute of Electrical and Electronics Engineers, Inc. All rights reserved. |
| Copyright_xml | – notice: Copyright (c) 2002 Institute of Electrical and Electronics Engineers, Inc. All rights reserved. |
| DBID | 6IE 6IL CBEJK RIE RIL 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/ICMI.2002.1167051 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 529 |
| ExternalDocumentID | 1167051 |
| Genre | Conference Paper |
| GroupedDBID | 6IE 6IK 6IL AAJGR AAVQY ACM ADPZR ALMA_UNASSIGNED_HOLDINGS APO BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK GUFHI OCL RIB RIC RIE RIL AAWTH LHSKQ 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-a325t-c225dce579c7457b0849e59676c094e16065758e4286ee54d239c831fad1084b3 |
| IEDL.DBID | RIE |
| ISBN | 9780769518343 0769518346 |
| ISICitedReferencesCount | 42 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000179248300086&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jul 10 23:04:14 EDT 2025 Tue Aug 26 18:27:22 EDT 2025 Wed Jan 31 06:49:20 EST 2024 Wed Jan 31 06:45:44 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a325t-c225dce579c7457b0849e59676c094e16065758e4286ee54d239c831fad1084b3 |
| Notes | SourceType-Conference Papers & Proceedings-1 ObjectType-Conference Paper-1 content type line 25 |
| OpenAccessLink | http://infoscience.epfl.ch/record/82818 |
| PQID | 31214177 |
| PQPubID | 23500 |
| PageCount | 1 |
| ParticipantIDs | acm_books_10_1109_ICMI_2002_1167051 acm_books_10_1109_ICMI_2002_1167051_brief proquest_miscellaneous_31214177 ieee_primary_1167051 |
| PublicationCentury | 2000 |
| PublicationDate | 20021014 20020000 |
| PublicationDateYYYYMMDD | 2002-10-14 2002-01-01 |
| PublicationDate_xml | – month: 10 year: 2002 text: 20021014 day: 14 |
| PublicationDecade | 2000 |
| PublicationPlace | Washington, DC, USA |
| PublicationPlace_xml | – name: Washington, DC, USA |
| PublicationSeriesTitle | ACM Conferences |
| PublicationTitle | Multimodal Interfaces: Proceedings of the International Conference on Multimodal Interfaces (4th: 2002: Pittsburgh, PA) |
| PublicationTitleAbbrev | ICMI |
| PublicationYear | 2002 |
| Publisher | IEEE Computer Society IEEE |
| Publisher_xml | – name: IEEE Computer Society – name: IEEE |
| SSID | ssj0000451081 |
| Score | 1.4406285 |
| Snippet | Automatic face analysis has to cope with pose and lighting variations. Especially pose variations are difficult to tackle and many face analysis methods... Automatic face analysis has to cope with pose and lighting variations. Pose variations are particularly difficult to tackle and many face analysis methods... |
| SourceID | proquest ieee acm |
| SourceType | Aggregation Database Publisher |
| StartPage | 529 |
| SubjectTerms | Automatic testing Character recognition Computing methodologies Computing methodologies -- Artificial intelligence Computing methodologies -- Artificial intelligence -- Computer vision Computing methodologies -- Artificial intelligence -- Computer vision -- Computer vision problems Computing methodologies -- Artificial intelligence -- Computer vision -- Computer vision problems -- Object recognition Computing methodologies -- Machine learning Computing methodologies -- Machine learning -- Machine learning approaches Computing methodologies -- Machine learning -- Machine learning approaches -- Neural networks Convolution Data analysis Face recognition Feature extraction Neural networks Neurons Performance analysis Robustness |
| Title | Head-Pose Invariant Facial Expression Recognition Using Convolutional Neural Networks |
| URI | https://ieeexplore.ieee.org/document/1167051 https://www.proquest.com/docview/31214177 |
| WOSCitedRecordID | wos000179248300086&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6QePCECkb8uUQvJg7WtVvbM5FAooSDGG7L1r0ZDm6EAX-_r92Agx70tC5pu-W13dv33vfeI-SRI4yQPk1c8DPhchb7bkxl4qaorRMaZqmwpoGPVzGZyPlcTRvkeR8LAwCWfAY907S-_LTQG2Mq6xufgWfipY-EEFWs1t6eYvKkoHqrkDn-NkjGwzrBzu6e1V5N6qn-ePA2tgSFXj2p0U76q66x8uPDbLXNsPW_9zwlnUPYnjPdK6Qz0oD8nLR2dRuc-hi3yWyEC-suixKcRb5FsIzSdbLYGM8dfFzFjM2dPbcI24Ye_-kYinq9VbGrSYVpL5ZIXnbIbPjyPhi5dXkFN2Z-sHY1HuVUQyCUFjwQiSe5gkCFItSI-YAitMF_OQkIUEKAgKc-U1oymsUpSpon7II08yKHS-Ig5lEp4GifJZwxIROpNAXFIJNeoOMueUDhRgY3lJGFHZ6KzBKYKph-VMurS57-0CtKVgvIuqRt5B4tq5wchynudwsX4Tkxzo84h2JTRoz6lFMhrn4feE1ObJ0Xa1y5Ic31agO35Fhv14tydWe32jdca8u_ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5VgAQTb1GekWBBIhDHTmzPFagVbcUAqJuVOBfUgRQ1Lb-fs5uWAQaY4kh-RHd2zt89Aa4EwQgVszzEuJSh4FkcZkzlYUHSOmdpWUivGnjty-FQjUb6qQU3q1gYRPTOZ3jrmt6WX0zs3KnK7pzNIHLx0uuJoEUW0VorjYrLlEICboHN6eKguEibFDvLd97YNVmk73qdQc-7KNw20zr5ZN-bKis_fs1e3jxs_-9Ld-DgO3AveFqJpF1oYbUH28vKDUFzkPfhpUusDT8mNQbj6pPgMtE3KDOnPg9ouYVvbBWsvIuo7Rzk3wLnpN5sVurqkmH6h3clrw_g5eH-udMNmwILYcbjZBZaOsyFxURqK0Ui80gJjYlOZWoJ9SEjcEO3OYUEUVLERBQx11ZxVmYFUVrk_BDWqkmFRxAQ6tEF0uiY54JzqXKlLUPNsVRRYrM2XBJxjUMOtfHAI9LGscDVwYxNQ682XP-hl8mnYyzbsO_obj4WWTm-p7hYMs7QSXHmj6zCybw2nMVMMCmPfx94AZvd50Hf9HvDxxPY8lVfvKrlFNZm0zmewYb9nI3r6bnfdl8kec8G |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Multimodal+Interfaces%3A+Proceedings+of+the+International+Conference+on+Multimodal+Interfaces+%284th%3A+2002%3A+Pittsburgh%2C+PA%29&rft.atitle=Head-pose+invariant+facial+expression+recognition+using+convolutional+neural+networks&rft.au=Fasel%2C+B.&rft.date=2002-01-01&rft.pub=IEEE&rft.isbn=9780769518343&rft.spage=529&rft.epage=534&rft_id=info:doi/10.1109%2FICMI.2002.1167051&rft.externalDocID=1167051 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769518343/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769518343/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769518343/sc.gif&client=summon&freeimage=true |

