Head-Pose Invariant Facial Expression Recognition Using Convolutional Neural Networks

Automatic face analysis has to cope with pose and lighting variations. Especially pose variations are difficult to tackle and many face analysis methods require the use of sophisticated normalization and initialization procedures. We propose a data-driven face analysis approach that is not only capa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multimodal Interfaces: Proceedings of the International Conference on Multimodal Interfaces (4th: 2002: Pittsburgh, PA) s. 529
Hlavní autor: Fasel, Beat
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: Washington, DC, USA IEEE Computer Society 14.10.2002
IEEE
Edice:ACM Conferences
Témata:
ISBN:9780769518343, 0769518346
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Automatic face analysis has to cope with pose and lighting variations. Especially pose variations are difficult to tackle and many face analysis methods require the use of sophisticated normalization and initialization procedures. We propose a data-driven face analysis approach that is not only capable of extracting features relevant to a given face analysis task, but is also more robust with regard to face location changes and scale variations when compared to classical methods such as e.g. MLPs. Our approach is based on convolutional neural networks that use multi-scale feature extractors, which allow for improved facial expression recognition results with faces subject to in-plane pose variations.
Bibliografie:SourceType-Conference Papers & Proceedings-1
ObjectType-Conference Paper-1
content type line 25
ISBN:9780769518343
0769518346
DOI:10.1109/ICMI.2002.1167051