Head-Pose Invariant Facial Expression Recognition Using Convolutional Neural Networks
Automatic face analysis has to cope with pose and lighting variations. Especially pose variations are difficult to tackle and many face analysis methods require the use of sophisticated normalization and initialization procedures. We propose a data-driven face analysis approach that is not only capa...
Uloženo v:
| Vydáno v: | Multimodal Interfaces: Proceedings of the International Conference on Multimodal Interfaces (4th: 2002: Pittsburgh, PA) s. 529 |
|---|---|
| Hlavní autor: | |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
Washington, DC, USA
IEEE Computer Society
14.10.2002
IEEE |
| Edice: | ACM Conferences |
| Témata: | |
| ISBN: | 9780769518343, 0769518346 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Automatic face analysis has to cope with pose and lighting variations. Especially pose variations are difficult to tackle and many face analysis methods require the use of sophisticated normalization and initialization procedures. We propose a data-driven face analysis approach that is not only capable of extracting features relevant to a given face analysis task, but is also more robust with regard to face location changes and scale variations when compared to classical methods such as e.g. MLPs. Our approach is based on convolutional neural networks that use multi-scale feature extractors, which allow for improved facial expression recognition results with faces subject to in-plane pose variations. |
|---|---|
| Bibliografie: | SourceType-Conference Papers & Proceedings-1 ObjectType-Conference Paper-1 content type line 25 |
| ISBN: | 9780769518343 0769518346 |
| DOI: | 10.1109/ICMI.2002.1167051 |

