Automatic Extraction of Cause-Effect-Relations from Requirements Artifacts

Background: The detection and extraction of causality from natural language sentences have shown great potential in various fields of application. The field of requirements engineering is eligible for multiple reasons: (1) requirements artifacts are primarily written in natural language, (2) causal...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE) s. 561 - 572
Hlavní autoři: Frattini, Julian, Junker, Maximilian, Unterkalmsteiner, Michael, Mendez, Daniel
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: ACM 01.09.2020
Témata:
ISSN:2643-1572
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background: The detection and extraction of causality from natural language sentences have shown great potential in various fields of application. The field of requirements engineering is eligible for multiple reasons: (1) requirements artifacts are primarily written in natural language, (2) causal sentences convey essential context about the subject of requirements, and (3) extracted and formalized causality relations are usable for a (semi-)automatic translation into further artifacts, such as test cases. Objective: We aim at understanding the value of interactive causality extraction based on syntactic criteria for the context of requirements engineering. Method: We developed a prototype of a system for automatic causality extraction and evaluate it by applying it to a set of publicly available requirements artifacts, determining whether the automatic extraction reduces the manual effort of requirements formalization. Result: During the evaluation we analyzed 4457 natural language sentences from 18 requirements documents, 558 of which were causal (12.52%). The best evaluation of a requirements document provided an automatic extraction of 48.57% cause-effect graphs on average, which demonstrates the feasibility of the approach. Limitation: The feasibility of the approach has been proven in theory but lacks exploration of being scaled up for practical use. Evaluating the applicability of the automatic causality extraction for a requirements engineer is left for future research. Conclusion: A syntactic approach for causality extraction is viable for the context of requirements engineering and can aid a pipeline towards an automatic generation of further artifacts from requirements artifacts.
AbstractList Background: The detection and extraction of causality from natural language sentences have shown great potential in various fields of application. The field of requirements engineering is eligible for multiple reasons: (1) requirements artifacts are primarily written in natural language, (2) causal sentences convey essential context about the subject of requirements, and (3) extracted and formalized causality relations are usable for a (semi-)automatic translation into further artifacts, such as test cases. Objective: We aim at understanding the value of interactive causality extraction based on syntactic criteria for the context of requirements engineering. Method: We developed a prototype of a system for automatic causality extraction and evaluate it by applying it to a set of publicly available requirements artifacts, determining whether the automatic extraction reduces the manual effort of requirements formalization. Result: During the evaluation we analyzed 4457 natural language sentences from 18 requirements documents, 558 of which were causal (12.52%). The best evaluation of a requirements document provided an automatic extraction of 48.57% cause-effect graphs on average, which demonstrates the feasibility of the approach. Limitation: The feasibility of the approach has been proven in theory but lacks exploration of being scaled up for practical use. Evaluating the applicability of the automatic causality extraction for a requirements engineer is left for future research. Conclusion: A syntactic approach for causality extraction is viable for the context of requirements engineering and can aid a pipeline towards an automatic generation of further artifacts from requirements artifacts.
Author Mendez, Daniel
Frattini, Julian
Unterkalmsteiner, Michael
Junker, Maximilian
Author_xml – sequence: 1
  givenname: Julian
  surname: Frattini
  fullname: Frattini, Julian
  email: julian.frattini@bth.se
  organization: Blekinge Institute of Technology,Karlskrona,Sweden
– sequence: 2
  givenname: Maximilian
  surname: Junker
  fullname: Junker, Maximilian
  email: maximilian.junker@qualicen.de
  organization: Qualicen GmbH,Munich,Germany
– sequence: 3
  givenname: Michael
  surname: Unterkalmsteiner
  fullname: Unterkalmsteiner, Michael
  email: michael.unterkalmsteiner@bth.se
  organization: Blekinge Institute of Technology,Karlskrona,Sweden
– sequence: 4
  givenname: Daniel
  surname: Mendez
  fullname: Mendez, Daniel
  email: daniel.mendez@bth.se
  organization: Blekinge Institute of Technology and fortiss GmbH,Karlskrona,Sweden
BookMark eNotjEtLxDAUhaMoODPO2oWb_IGOSe7No8sy1BcDwqDrIe3cQGXaapKC_nsrujp85-OcJbsYxoEYu5FiIyXqOwCFzuEGUBqN5Rlbl9bNQoCxxuE5WyiDUEht1RVbpvQuhJ7BLthzNeWx97lref2Vo29zNw58DHzrp0RFHQK1udjTyf-KxEMce76nz6mL1NOQE69i7sK8S9fsMvhTovV_rtjbff26fSx2Lw9P22pXeFA6FwoDBN-UFqmxTTiKFtrGSSlcg4JQzKUopWukJQeojfcSlHFWCjxKCBZW7PbvtyOiw0fseh-_D6VyRtgSfgCtVU4b
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/3324884.3416549
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781450367684
1450367682
EISSN 2643-1572
EndPage 572
ExternalDocumentID 9286079
Genre orig-research
GroupedDBID 29I
6IE
6IF
6IH
6IK
6IL
6IM
6IN
6J9
AAJGR
AAWTH
ABLEC
ACREN
ADYOE
ADZIZ
AFYQB
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-a325t-24f3fab974eb7bfd0c3cb81108b40e40b7b0918b17e83456aa132687104d13f73
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000651313500048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:33:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a325t-24f3fab974eb7bfd0c3cb81108b40e40b7b0918b17e83456aa132687104d13f73
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:bth-20960
PageCount 12
ParticipantIDs ieee_primary_9286079
PublicationCentury 2000
PublicationDate 2020-Sept.
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-Sept.
PublicationDecade 2020
PublicationTitle 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)
PublicationTitleAbbrev ASE
PublicationYear 2020
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0051577
ssj0002871035
Score 2.2488003
Snippet Background: The detection and extraction of causality from natural language sentences have shown great potential in various fields of application. The field of...
SourceID ieee
SourceType Publisher
StartPage 561
SubjectTerms causality extraction
Manuals
natural language processing
Natural languages
pattern matching
Pipelines
Prototypes
requirements artifacts
Requirements engineering
Software engineering
Syntactics
Title Automatic Extraction of Cause-Effect-Relations from Requirements Artifacts
URI https://ieeexplore.ieee.org/document/9286079
WOSCitedRecordID wos000651313500048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED21FQNTgRbxLQ-MuE1zSeyMVdUKMVQVAqlbZccXiaVBTYL4-dhOCAwsbJGn6GLnvTvfewdwb_NpcnaFnFRseGQBmevUILfMQuYWcS1KaT9sQqzXcrtNNz146LQwROSbz2jiHv1dvimy2pXKpmkok0CkfegLIRqtVldPccw_wI76WpgWorXymUXxFC1xkDKa2J92EjvjzF-zVDyUrIb_e4kTGP9o8timQ5tT6NH-DIbfQxlYe0ZH8DSvq8L7sLLlZ3VodAusyNlC1SXxxq2Ydz1wzOlL2DO5hmBfKSzZ3G4mp3cox_C6Wr4sHnk7MIErDOOKh1GOudI2RSAtdG6CDDMtXaO_jgKKArto6YHUM0ESLXNSyuaiiQtcZGaYCzyHwb7Y0wUwiYEmRKUwD_3VaipUGBiMM0Sj0FzCyIVm9954YuzaqFz9vXwNx6HLU31v1g0MqkNNt3CUfVRv5eHOf8gvOV2c_A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2VggRTgRbxjQdG3CY5p3HGqqIqUKoKFalbZceOxNKgJkH8fGwnBAYWtshTdLHz3p3vvQO4Nfm0tnaFVItQUWYAmcpYITXMgqcGcQ1KSTdsIprP-WoVL1pw12hhtNau-Uz37aO7y1dZUtpS2SAO-NCL4h3YDRkL_Eqt1VRULPf3sCG_BqijqDbz8Vk4QEMdOGd989sehtY689c0FQcmk87_XuMQej-qPLJo8OYIWnpzDJ3vsQykPqVdeByVReacWMn9Z7GtlAskS8lYlLmmlV8xbbrgiFWYkBdtW4JdrTAnI7OdrOIh78Hr5H45ntJ6ZAIVGIQFDViKqZAmSdAykqnyEkwkt63-knmaeWbREAQu_UhzNNxJCJONDm3gmPIxjfAE2ptso0-BcPSkRhQC08BdrsaRCDyFYYKoBKoz6NrQrN8rV4x1HZXzv5dvYH-6fJ6tZw_zpws4CGzW6jq1LqFdbEt9BXvJR_GWb6_dR_0ClGSgQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+35th+IEEE%2FACM+International+Conference+on+Automated+Software+Engineering+%28ASE%29&rft.atitle=Automatic+Extraction+of+Cause-Effect-Relations+from+Requirements+Artifacts&rft.au=Frattini%2C+Julian&rft.au=Junker%2C+Maximilian&rft.au=Unterkalmsteiner%2C+Michael&rft.au=Mendez%2C+Daniel&rft.date=2020-09-01&rft.pub=ACM&rft.eissn=2643-1572&rft.spage=561&rft.epage=572&rft_id=info:doi/10.1145%2F3324884.3416549&rft.externalDocID=9286079