Van der Waals Superstructure and Twisting in Self-Intercalated Magnet with Near Room-Temperature Perpendicular Ferromagnetism
The emergence of van der Waals (vdW) magnets has created unprecedented opportunities to manipulate magnetism for advanced spintronics based upon all-vdW heterostructures. Among various vdW magnets, Cr1+δTe2 possesses high temperature ferromagnetism along with possible topological spin textures. As t...
Uloženo v:
| Vydáno v: | Nano letters Ročník 21; číslo 22; s. 9517 - 9525 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
American Chemical Society
24.11.2021
|
| Témata: | |
| ISSN: | 1530-6984, 1530-6992, 1530-6992 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The emergence of van der Waals (vdW) magnets has created unprecedented opportunities to manipulate magnetism for advanced spintronics based upon all-vdW heterostructures. Among various vdW magnets, Cr1+δTe2 possesses high temperature ferromagnetism along with possible topological spin textures. As this system can support self-intercalation in the vdW gap, it is crucial to precisely pinpoint the exact intercalation to understand the intrinsic magnetism of the system. Here, we developed an iterative method to determine the self-intercalated structures and show evidence of vdW “superstructures” in individual Cr1+δTe2 nanoplates exhibiting magnetic behaviors distinct from bulk chromium tellurides. Among 26,332 possible configurations, we unambiguously identified the Cr-intercalated structure as 3-fold symmetry broken Cr1.5Te2 segmented by vdW gaps. Moreover, a twisted Cr-intercalated layered structure is observed. The spontaneous formation of twisted vdW “superstructures” not only provides insight into the diverse magnetic properties of intercalated vdW magnets but may also add complementary building blocks to vdW-based spintronics. |
|---|---|
| AbstractList | The emergence of van der Waals (vdW) magnets has created unprecedented opportunities to manipulate magnetism for advanced spintronics based upon all-vdW heterostructures. Among various vdW magnets, Cr1+δTe2 possesses high temperature ferromagnetism along with possible topological spin textures. As this system can support self-intercalation in the vdW gap, it is crucial to precisely pinpoint the exact intercalation to understand the intrinsic magnetism of the system. Here, we developed an iterative method to determine the self-intercalated structures and show evidence of vdW “superstructures” in individual Cr1+δTe2 nanoplates exhibiting magnetic behaviors distinct from bulk chromium tellurides. Among 26,332 possible configurations, we unambiguously identified the Cr-intercalated structure as 3-fold symmetry broken Cr1.5Te2 segmented by vdW gaps. Moreover, a twisted Cr-intercalated layered structure is observed. The spontaneous formation of twisted vdW “superstructures” not only provides insight into the diverse magnetic properties of intercalated vdW magnets but may also add complementary building blocks to vdW-based spintronics. The emergence of van der Waals (vdW) magnets has created unprecedented opportunities to manipulate magnetism for advanced spintronics based upon all-vdW heterostructures. Among various vdW magnets, Cr1+δTe2 possesses high temperature ferromagnetism along with possible topological spin textures. As this system can support self-intercalation in the vdW gap, it is crucial to precisely pinpoint the exact intercalation to understand the intrinsic magnetism of the system. Here, we developed an iterative method to determine the self-intercalated structures and show evidence of vdW "superstructures" in individual Cr1+δTe2 nanoplates exhibiting magnetic behaviors distinct from bulk chromium tellurides. Among 26,332 possible configurations, we unambiguously identified the Cr-intercalated structure as 3-fold symmetry broken Cr1.5Te2 segmented by vdW gaps. Moreover, a twisted Cr-intercalated layered structure is observed. The spontaneous formation of twisted vdW "superstructures" not only provides insight into the diverse magnetic properties of intercalated vdW magnets but may also add complementary building blocks to vdW-based spintronics.The emergence of van der Waals (vdW) magnets has created unprecedented opportunities to manipulate magnetism for advanced spintronics based upon all-vdW heterostructures. Among various vdW magnets, Cr1+δTe2 possesses high temperature ferromagnetism along with possible topological spin textures. As this system can support self-intercalation in the vdW gap, it is crucial to precisely pinpoint the exact intercalation to understand the intrinsic magnetism of the system. Here, we developed an iterative method to determine the self-intercalated structures and show evidence of vdW "superstructures" in individual Cr1+δTe2 nanoplates exhibiting magnetic behaviors distinct from bulk chromium tellurides. Among 26,332 possible configurations, we unambiguously identified the Cr-intercalated structure as 3-fold symmetry broken Cr1.5Te2 segmented by vdW gaps. Moreover, a twisted Cr-intercalated layered structure is observed. The spontaneous formation of twisted vdW "superstructures" not only provides insight into the diverse magnetic properties of intercalated vdW magnets but may also add complementary building blocks to vdW-based spintronics. |
| Author | Coughlin, Amanda L Deng, Liangzi Wang, Jian Zhan, Xun Yao, Yue Li, Yan Chu, Ching-Wu Zhang, Shixiong Hewa-Walpitage, Heshan Fertig, Herbert A Xie, Dongyue Bontke, Trevor |
| AuthorAffiliation | Indiana University University of Utah Quantum Science and Engineering Center Department of Mechanical and Materials Engineering Lawrence Berkeley National Laboratory Department of Physics and Astronomy Texas Center for Superconductivity and Department of Physics Electron Microscope Center Department of Physics |
| AuthorAffiliation_xml | – name: Department of Mechanical and Materials Engineering – name: University of Utah – name: Indiana University – name: Department of Physics and Astronomy – name: Lawrence Berkeley National Laboratory – name: Texas Center for Superconductivity and Department of Physics – name: Electron Microscope Center – name: Department of Physics – name: Quantum Science and Engineering Center |
| Author_xml | – sequence: 1 givenname: Amanda L surname: Coughlin fullname: Coughlin, Amanda L organization: Department of Physics – sequence: 2 givenname: Dongyue surname: Xie fullname: Xie, Dongyue organization: Department of Mechanical and Materials Engineering – sequence: 3 givenname: Xun surname: Zhan fullname: Zhan, Xun organization: Indiana University – sequence: 4 givenname: Yue surname: Yao fullname: Yao, Yue organization: University of Utah – sequence: 5 givenname: Liangzi surname: Deng fullname: Deng, Liangzi organization: Texas Center for Superconductivity and Department of Physics – sequence: 6 givenname: Heshan surname: Hewa-Walpitage fullname: Hewa-Walpitage, Heshan organization: University of Utah – sequence: 7 givenname: Trevor surname: Bontke fullname: Bontke, Trevor organization: Texas Center for Superconductivity and Department of Physics – sequence: 8 givenname: Ching-Wu orcidid: 0000-0003-3955-7095 surname: Chu fullname: Chu, Ching-Wu organization: Lawrence Berkeley National Laboratory – sequence: 9 givenname: Yan surname: Li fullname: Li, Yan organization: University of Utah – sequence: 10 givenname: Jian surname: Wang fullname: Wang, Jian organization: Department of Mechanical and Materials Engineering – sequence: 11 givenname: Herbert A surname: Fertig fullname: Fertig, Herbert A organization: Quantum Science and Engineering Center – sequence: 12 givenname: Shixiong orcidid: 0000-0002-1004-0597 surname: Zhang fullname: Zhang, Shixiong email: sxzhang@indiana.edu organization: Quantum Science and Engineering Center |
| BookMark | eNqFkMtOHDEQRa0IpPDIH2ThZTY9lB_dM84uQrwkIAiGZNmquMtg1G0PtlsjFvn3NAxhkUVYVUl1zy3p7LKtEAMx9lnATIAUB2jzLGCIPZUyExak0fCB7YhaQdUYI7fe9oX-yHZzfgAAo2rYYb9_YOAdJf4Tsc_8ZlxRyiWNtoyJOIaOL9c-Fx_uuA_8hnpXnYVCyWKPhTp-gXeBCl_7cs8vCRO_jnGoljRMPfjScUVpRaHzduyn8zGlFIcXyOdhn2276S19ep177Pb4aHl4Wp1_Pzk7_HZeoZJ1qURtnFTGYoPglLZag3LazZ2pawvil9SycU2nqXMgzKLBOXWGjJjPgcRCodpjXza9qxQfR8qlHXy21PcYKI65lbVRkzUjYYrqTdSmmHMi166SHzA9tQLaZ9vtZLv9a7t9tT1hX__BrC9YfAwloe_fg2EDP18f4pjCJOP_yB_K9p-b |
| CitedBy_id | crossref_primary_10_1088_1674_1056_adab67 crossref_primary_10_1021_acsnano_5c10466 crossref_primary_10_1021_acs_cgd_5c00094 crossref_primary_10_1038_s41467_022_32737_8 crossref_primary_10_1002_adma_202200117 crossref_primary_10_1088_1674_1056_ad4cd8 crossref_primary_10_1021_jacs_4c09842 crossref_primary_10_1016_j_chphma_2023_04_001 crossref_primary_10_1007_s11467_023_1387_y crossref_primary_10_1063_5_0277493 crossref_primary_10_1007_s11467_023_1342_y crossref_primary_10_1088_1361_6633_adef66 crossref_primary_10_1002_adfm_202208528 crossref_primary_10_1038_s41467_025_59266_4 crossref_primary_10_1038_s41467_025_63535_7 crossref_primary_10_1039_D4NR00048J crossref_primary_10_1016_j_apsusc_2023_157358 crossref_primary_10_1002_smsc_202500028 crossref_primary_10_1103_PhysRevMaterials_7_044406 crossref_primary_10_1063_5_0171308 crossref_primary_10_1016_j_materresbull_2023_112585 crossref_primary_10_1002_adfm_202401304 crossref_primary_10_1002_adfm_202414699 crossref_primary_10_1002_aelm_202400820 crossref_primary_10_1002_adma_202205967 crossref_primary_10_1063_5_0130479 crossref_primary_10_1063_5_0202667 crossref_primary_10_1002_smtd_202201585 crossref_primary_10_1021_acs_jpcc_5c03528 |
| Cites_doi | 10.1038/s41598-019-47265-7 10.1002/adma.202103360 10.1038/s41586-018-0631-z 10.1021/acsanm.9b01179 10.1021/acs.nanolett.8b01131 10.1088/0953-8984/1/46/008 10.1038/nnano.2012.224 10.1021/acs.nanolett.8b03321 10.1021/acs.nanolett.9b05128 10.1103/PhysRevB.98.195122 10.1021/acs.nanolett.8b05121 10.1002/adma.201900065 10.1038/s41565-018-0121-3 10.1039/C5CP04835D 10.1038/s41563-018-0040-6 10.1063/1.4914134 10.1103/PhysRevB.49.3962 10.1126/science.aav1937 10.1103/PhysRevB.92.144404 10.1007/BF00560631 10.1038/s41467-020-17320-3 10.1021/acs.nanolett.9b00553 10.1103/PhysRevB.96.134410 10.1021/acsnano.1c00488 10.1103/PhysRevB.96.054406 10.1088/2053-1583/aa75ed 10.1063/1.5143387 10.1038/nature12385 10.1103/PhysRevB.99.144401 10.1021/acsami.0c04447 10.1103/PhysRevMaterials.3.014001 10.1038/s41467-018-04953-8 10.1088/2053-1583/3/2/025035 10.1038/s42254-019-0110-y 10.1038/s41563-020-0791-8 10.1021/acsnano.0c05534 10.1103/PhysRevB.53.7673 10.1038/nature15387 10.1021/acsami.0c07017 10.1021/nn5065716 10.1038/s41467-021-21072-z 10.1088/0953-8984/27/17/176002 10.1016/j.jmmm.2017.08.078 10.1063/1.96254 10.1038/nature22391 10.1038/s41928-018-0087-z 10.1007/s12274-020-3021-4 10.1007/s12274-017-1913-8 10.1126/science.aar4851 10.1021/acs.nanolett.0c02381 10.1103/PhysRevLett.17.1133 10.1039/C8NR02272K 10.1016/j.jssc.2003.09.041 10.1038/s41565-018-0186-z 10.1039/D0NR04108D 10.1021/acs.nanolett.8b01552 10.1088/2053-1583/aa7034 10.1038/s41565-018-0135-x 10.1038/s41467-021-22777-x 10.1209/0295-5075/29/3/011 10.1038/s41565-019-0438-6 10.1088/2053-1583/abfaae 10.1038/s41928-019-0232-3 10.1038/nature22060 10.3891/acta.chem.scand.24-3495 10.1103/PhysRevB.100.245114 |
| ContentType | Journal Article |
| Copyright | 2021 American Chemical Society |
| Copyright_xml | – notice: 2021 American Chemical Society |
| DBID | AAYXX CITATION 7X8 |
| DOI | 10.1021/acs.nanolett.1c02940 |
| DatabaseName | CrossRef MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1530-6992 |
| EndPage | 9525 |
| ExternalDocumentID | 10_1021_acs_nanolett_1c02940 c986993528 |
| GroupedDBID | - 123 4.4 55A 5VS 7~N AABXI ABFRP ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED F5P GGK GNL IH9 IHE JG K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X .K2 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV CITATION CUPRZ ED~ JG~ 7X8 |
| ID | FETCH-LOGICAL-a325t-159f239ca6a0f34c4403f4f7f955c01b2426f6d4edf01986a7ed9e91770e183a3 |
| IEDL.DBID | ACS |
| ISICitedReferencesCount | 45 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000756421600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-6984 1530-6992 |
| IngestDate | Wed Oct 01 14:30:36 EDT 2025 Tue Nov 18 21:31:37 EST 2025 Sat Nov 29 06:17:21 EST 2025 Fri Nov 26 04:26:48 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Keywords | van der Waals materials chromium telluride 2D magnets self-intercalation twisting |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a325t-159f239ca6a0f34c4403f4f7f955c01b2426f6d4edf01986a7ed9e91770e183a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-1004-0597 0000-0003-3955-7095 |
| PQID | 2593029920 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2593029920 crossref_primary_10_1021_acs_nanolett_1c02940 crossref_citationtrail_10_1021_acs_nanolett_1c02940 acs_journals_10_1021_acs_nanolett_1c02940 |
| PublicationCentury | 2000 |
| PublicationDate | 20211124 2021-11-24 |
| PublicationDateYYYYMMDD | 2021-11-24 |
| PublicationDate_xml | – month: 11 year: 2021 text: 20211124 day: 24 |
| PublicationDecade | 2020 |
| PublicationTitle | Nano letters |
| PublicationTitleAlternate | Nano Lett |
| PublicationYear | 2021 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
| References_xml | – ident: ref54/cit54 doi: 10.1038/s41598-019-47265-7 – ident: ref64/cit64 doi: 10.1002/adma.202103360 – ident: ref3/cit3 doi: 10.1038/s41586-018-0631-z – ident: ref55/cit55 doi: 10.1021/acsanm.9b01179 – ident: ref31/cit31 doi: 10.1021/acs.nanolett.8b01131 – ident: ref63/cit63 doi: 10.1088/0953-8984/1/46/008 – ident: ref17/cit17 doi: 10.1038/nnano.2012.224 – ident: ref24/cit24 doi: 10.1021/acs.nanolett.8b03321 – ident: ref60/cit60 doi: 10.1021/acs.nanolett.9b05128 – ident: ref47/cit47 doi: 10.1103/PhysRevB.98.195122 – ident: ref43/cit43 doi: 10.1021/acs.nanolett.8b05121 – ident: ref8/cit8 doi: 10.1002/adma.201900065 – ident: ref13/cit13 doi: 10.1038/s41565-018-0121-3 – ident: ref15/cit15 doi: 10.1039/C5CP04835D – ident: ref68/cit68 – ident: ref12/cit12 doi: 10.1038/s41563-018-0040-6 – ident: ref42/cit42 doi: 10.1063/1.4914134 – ident: ref10/cit10 doi: 10.1103/PhysRevB.49.3962 – ident: ref28/cit28 doi: 10.1126/science.aav1937 – ident: ref40/cit40 doi: 10.1103/PhysRevB.92.144404 – ident: ref67/cit67 doi: 10.1007/BF00560631 – ident: ref25/cit25 doi: 10.1038/s41467-020-17320-3 – ident: ref29/cit29 doi: 10.1021/acs.nanolett.9b00553 – ident: ref46/cit46 doi: 10.1103/PhysRevB.96.134410 – ident: ref33/cit33 doi: 10.1021/acsnano.1c00488 – ident: ref41/cit41 doi: 10.1103/PhysRevB.96.054406 – ident: ref23/cit23 doi: 10.1088/2053-1583/aa75ed – ident: ref56/cit56 doi: 10.1063/1.5143387 – ident: ref11/cit11 doi: 10.1038/nature12385 – ident: ref26/cit26 doi: 10.1103/PhysRevB.99.144401 – ident: ref58/cit58 doi: 10.1021/acsami.0c04447 – ident: ref44/cit44 doi: 10.1103/PhysRevMaterials.3.014001 – ident: ref21/cit21 doi: 10.1038/s41467-018-04953-8 – ident: ref39/cit39 doi: 10.1088/2053-1583/3/2/025035 – ident: ref5/cit5 doi: 10.1038/s42254-019-0110-y – ident: ref6/cit6 doi: 10.1038/s41563-020-0791-8 – ident: ref49/cit49 doi: 10.1021/acsnano.0c05534 – ident: ref66/cit66 doi: 10.1103/PhysRevB.53.7673 – ident: ref18/cit18 doi: 10.1038/nature15387 – ident: ref36/cit36 doi: 10.1021/acsami.0c07017 – ident: ref50/cit50 doi: 10.1021/nn5065716 – ident: ref59/cit59 doi: 10.1038/s41467-021-21072-z – ident: ref35/cit35 doi: 10.1088/0953-8984/27/17/176002 – ident: ref52/cit52 doi: 10.1016/j.jmmm.2017.08.078 – ident: ref9/cit9 doi: 10.1063/1.96254 – ident: ref2/cit2 doi: 10.1038/nature22391 – ident: ref27/cit27 doi: 10.1038/s41928-018-0087-z – ident: ref34/cit34 doi: 10.1007/s12274-020-3021-4 – ident: ref57/cit57 doi: 10.1007/s12274-017-1913-8 – ident: ref19/cit19 doi: 10.1126/science.aar4851 – ident: ref30/cit30 doi: 10.1021/acs.nanolett.0c02381 – ident: ref61/cit61 doi: 10.1103/PhysRevLett.17.1133 – ident: ref53/cit53 doi: 10.1039/C8NR02272K – ident: ref65/cit65 doi: 10.1016/j.jssc.2003.09.041 – ident: ref38/cit38 doi: 10.1038/s41565-018-0186-z – ident: ref51/cit51 doi: 10.1039/D0NR04108D – ident: ref20/cit20 doi: 10.1021/acs.nanolett.8b01552 – ident: ref14/cit14 doi: 10.1088/2053-1583/aa7034 – ident: ref16/cit16 doi: 10.1038/s41565-018-0135-x – ident: ref32/cit32 doi: 10.1038/s41467-021-22777-x – ident: ref37/cit37 doi: 10.1209/0295-5075/29/3/011 – ident: ref4/cit4 doi: 10.1038/s41565-019-0438-6 – ident: ref45/cit45 doi: 10.1088/2053-1583/abfaae – ident: ref22/cit22 doi: 10.1038/s41928-019-0232-3 – ident: ref7/cit7 – ident: ref1/cit1 doi: 10.1038/nature22060 – ident: ref62/cit62 doi: 10.3891/acta.chem.scand.24-3495 – ident: ref48/cit48 doi: 10.1103/PhysRevB.100.245114 |
| SSID | ssj0009350 |
| Score | 2.55089 |
| Snippet | The emergence of van der Waals (vdW) magnets has created unprecedented opportunities to manipulate magnetism for advanced spintronics based upon all-vdW... |
| SourceID | proquest crossref acs |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9517 |
| Title | Van der Waals Superstructure and Twisting in Self-Intercalated Magnet with Near Room-Temperature Perpendicular Ferromagnetism |
| URI | http://dx.doi.org/10.1021/acs.nanolett.1c02940 https://www.proquest.com/docview/2593029920 |
| Volume | 21 |
| WOSCitedRecordID | wos000756421600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1530-6992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009350 issn: 1530-6984 databaseCode: ACS dateStart: 20010101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYK5UAPbXkJ2oKM1AsHw67tffiIUCMuRKhJS26riT1GkYKDdpP21P_e8WZTChJCXFf2yutvHt94vDOMfc0xI1RVTPlDKTSMlTBGO-ESr5yReZaBbptNFP1-ORqZ64dA8WkGX6ZnYJvTAGFGnzE_TW0ijaYQ_a0kphsl-vxi8FBkV7UdWUmJKSQypV79KvfMW6JDss1jh_TYHrdOpvfhtcv7yN53dJKfL_HfYm8wbLN3_xUZ3GF_fkLgDmt-AyRqfLC4j4wvVo1d1MghOD78HRU93PJJ4AOcetEeExJ4xEMdv4LbgHMeD2x5n_SCfyeuLYZIfHtZj5lfYx076U7aK628h3U9u2snTZq7Xfaj9214cSm6pgsClMzmguiNl8pYyIHg0lbrRHntC2-yzCbpOLp0nzuNzhM7LHMo0BmkoK9IkMwDqD22HmYB9xlPDZaQgFLO5xpUYQyZE1uMrZUqg8IfsBPavapTmqZq8-EyreLD1ZZW3ZYeMLVCqbJd9fLYRGP6wizxb9b9snrHC-OPVwJQkZrF3AkEnC2aiqJERUOMTD69YtWf2aaMd2DSVEj9ha0TuHjINuwvAqA-YmvFqDxqRfgvxwLyEg |
| linkProvider | American Chemical Society |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqggQcKK-KQgEjceFgSGzn4WNVdVVEu6rYBXqLZu1xtVLrrZJdOPHfGXsT2h5QBVfLdpx5eGY89jeMvSuxIK6qmPKHWmiYKWGMdsJlXjkjy6IAnYpNVONxfXpqTjZYMbyFoUV0NFOXkvhX6AL5x9gWICzob5YfcptJoylSv0NfMlG89_YnV1i7KhVmJV2myMjUengx95dZol2y3U27dHNbTrZmtPWfq3zEHvbOJd9bS8NjtoHhCXtwDXLwKfv1DQJ32PLvQILHJ6vL6P9FDNlVixyC49OfUe3DGZ8HPsFzL9KhIbGSvFLHj-Es4JLH41s-Ji3hX8jzFlMk73uNzsxPsI11defpgisfYdsuLtKgeXfxjH0dHUz3D0VfgkGAksVSkLPjpTIWSiDmaat1prz2lTdFYbN8Fg28L51G58lXrEuo0BmkELDKkDYLUNtsMywCPmc8N1hDBko5X2pQlTG0udhqZq1UBVR-h70n6jW9CnVNyo7LvImNA0mbnqQ7TA3MamyPZR5LapzfMkr8GXW5xvK4pf_bQQ4aUrqYSYGAi1XXUMyoqIuR2Yt_WPUbdu9wenzUHH0af37J7st4OybPhdS7bJMYja_YXfuDmNG-TvL8G0Jj-ZA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqUiE40PIShVKMxIWDYdf2PnysChFVIYpIgN5WE3tcRWqdaDeBE_-dsbOB9oAqxNWyLa9nxvONx_sNY69KLEiqKqb8oRYapkoYo51wmVfOyLIoQKdiE9VwWJ-dmdGVUl-0iI5m6lISP1r1wvmeYSB_G9sDhDl90fJNbjNpNEXrtwry6VHFj47Hf_h2VSrOSvZM0ZGp9eavub_MEn2T7a77putHc_I3g93_WOkeu9eDTH601or7bAvDA3b3CvXgQ_bzKwTusOXfgBSQj1eLiAMjl-yqRQ7B8cmPaP7hnM8CH-OFF-nykERK6NTxT3AecMnjNS4fkrXwz4TAxQQJha9ZmvkI21hfd5YeuvIBtu38Mg2adZeP2JfB-8nxB9GXYhCgZLEUBHq8VMZCCSREbbXOlNe-8qYobJZPo6P3pdPoPGHGuoQKnUEKBasM6dAA9Zhth3nAJ4znBmvIQCnnSw2qMoYOGVtNrZWqgMrvs9e0e01vSl2TsuQyb2LjZkubfkv3mdoIrLE9p3ksrXFxwyjxe9RizelxQ_-XG11oyPhiRgUCzlddQ7Gjoi5GZk__YdUv2O3Ru0Hz8WR4-ozdkfGRTJ4LqQ_YNskZn7Md-51k0R4mlf4FIr78Cg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Van+der+Waals+Superstructure+and+Twisting+in+Self-Intercalated+Magnet+with+Near+Room-Temperature+Perpendicular+Ferromagnetism&rft.jtitle=Nano+letters&rft.au=Coughlin%2C+Amanda+L&rft.au=Xie%2C+Dongyue&rft.au=Zhan%2C+Xun&rft.au=Yao%2C+Yue&rft.date=2021-11-24&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=21&rft.issue=22&rft.spage=9517&rft.epage=9525&rft_id=info:doi/10.1021%2Facs.nanolett.1c02940&rft.externalDocID=c986993528 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |