Van der Waals Superstructure and Twisting in Self-Intercalated Magnet with Near Room-Temperature Perpendicular Ferromagnetism

The emergence of van der Waals (vdW) magnets has created unprecedented opportunities to manipulate magnetism for advanced spintronics based upon all-vdW heterostructures. Among various vdW magnets, Cr1+δTe2 possesses high temperature ferromagnetism along with possible topological spin textures. As t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nano letters Ročník 21; číslo 22; s. 9517 - 9525
Hlavní autoři: Coughlin, Amanda L, Xie, Dongyue, Zhan, Xun, Yao, Yue, Deng, Liangzi, Hewa-Walpitage, Heshan, Bontke, Trevor, Chu, Ching-Wu, Li, Yan, Wang, Jian, Fertig, Herbert A, Zhang, Shixiong
Médium: Journal Article
Jazyk:angličtina
Vydáno: American Chemical Society 24.11.2021
Témata:
ISSN:1530-6984, 1530-6992, 1530-6992
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The emergence of van der Waals (vdW) magnets has created unprecedented opportunities to manipulate magnetism for advanced spintronics based upon all-vdW heterostructures. Among various vdW magnets, Cr1+δTe2 possesses high temperature ferromagnetism along with possible topological spin textures. As this system can support self-intercalation in the vdW gap, it is crucial to precisely pinpoint the exact intercalation to understand the intrinsic magnetism of the system. Here, we developed an iterative method to determine the self-intercalated structures and show evidence of vdW “superstructures” in individual Cr1+δTe2 nanoplates exhibiting magnetic behaviors distinct from bulk chromium tellurides. Among 26,332 possible configurations, we unambiguously identified the Cr-intercalated structure as 3-fold symmetry broken Cr1.5Te2 segmented by vdW gaps. Moreover, a twisted Cr-intercalated layered structure is observed. The spontaneous formation of twisted vdW “superstructures” not only provides insight into the diverse magnetic properties of intercalated vdW magnets but may also add complementary building blocks to vdW-based spintronics.
AbstractList The emergence of van der Waals (vdW) magnets has created unprecedented opportunities to manipulate magnetism for advanced spintronics based upon all-vdW heterostructures. Among various vdW magnets, Cr1+δTe2 possesses high temperature ferromagnetism along with possible topological spin textures. As this system can support self-intercalation in the vdW gap, it is crucial to precisely pinpoint the exact intercalation to understand the intrinsic magnetism of the system. Here, we developed an iterative method to determine the self-intercalated structures and show evidence of vdW “superstructures” in individual Cr1+δTe2 nanoplates exhibiting magnetic behaviors distinct from bulk chromium tellurides. Among 26,332 possible configurations, we unambiguously identified the Cr-intercalated structure as 3-fold symmetry broken Cr1.5Te2 segmented by vdW gaps. Moreover, a twisted Cr-intercalated layered structure is observed. The spontaneous formation of twisted vdW “superstructures” not only provides insight into the diverse magnetic properties of intercalated vdW magnets but may also add complementary building blocks to vdW-based spintronics.
The emergence of van der Waals (vdW) magnets has created unprecedented opportunities to manipulate magnetism for advanced spintronics based upon all-vdW heterostructures. Among various vdW magnets, Cr1+δTe2 possesses high temperature ferromagnetism along with possible topological spin textures. As this system can support self-intercalation in the vdW gap, it is crucial to precisely pinpoint the exact intercalation to understand the intrinsic magnetism of the system. Here, we developed an iterative method to determine the self-intercalated structures and show evidence of vdW "superstructures" in individual Cr1+δTe2 nanoplates exhibiting magnetic behaviors distinct from bulk chromium tellurides. Among 26,332 possible configurations, we unambiguously identified the Cr-intercalated structure as 3-fold symmetry broken Cr1.5Te2 segmented by vdW gaps. Moreover, a twisted Cr-intercalated layered structure is observed. The spontaneous formation of twisted vdW "superstructures" not only provides insight into the diverse magnetic properties of intercalated vdW magnets but may also add complementary building blocks to vdW-based spintronics.The emergence of van der Waals (vdW) magnets has created unprecedented opportunities to manipulate magnetism for advanced spintronics based upon all-vdW heterostructures. Among various vdW magnets, Cr1+δTe2 possesses high temperature ferromagnetism along with possible topological spin textures. As this system can support self-intercalation in the vdW gap, it is crucial to precisely pinpoint the exact intercalation to understand the intrinsic magnetism of the system. Here, we developed an iterative method to determine the self-intercalated structures and show evidence of vdW "superstructures" in individual Cr1+δTe2 nanoplates exhibiting magnetic behaviors distinct from bulk chromium tellurides. Among 26,332 possible configurations, we unambiguously identified the Cr-intercalated structure as 3-fold symmetry broken Cr1.5Te2 segmented by vdW gaps. Moreover, a twisted Cr-intercalated layered structure is observed. The spontaneous formation of twisted vdW "superstructures" not only provides insight into the diverse magnetic properties of intercalated vdW magnets but may also add complementary building blocks to vdW-based spintronics.
Author Coughlin, Amanda L
Deng, Liangzi
Wang, Jian
Zhan, Xun
Yao, Yue
Li, Yan
Chu, Ching-Wu
Zhang, Shixiong
Hewa-Walpitage, Heshan
Fertig, Herbert A
Xie, Dongyue
Bontke, Trevor
AuthorAffiliation Indiana University
University of Utah
Quantum Science and Engineering Center
Department of Mechanical and Materials Engineering
Lawrence Berkeley National Laboratory
Department of Physics and Astronomy
Texas Center for Superconductivity and Department of Physics
Electron Microscope Center
Department of Physics
AuthorAffiliation_xml – name: Department of Mechanical and Materials Engineering
– name: University of Utah
– name: Indiana University
– name: Department of Physics and Astronomy
– name: Lawrence Berkeley National Laboratory
– name: Texas Center for Superconductivity and Department of Physics
– name: Electron Microscope Center
– name: Department of Physics
– name: Quantum Science and Engineering Center
Author_xml – sequence: 1
  givenname: Amanda L
  surname: Coughlin
  fullname: Coughlin, Amanda L
  organization: Department of Physics
– sequence: 2
  givenname: Dongyue
  surname: Xie
  fullname: Xie, Dongyue
  organization: Department of Mechanical and Materials Engineering
– sequence: 3
  givenname: Xun
  surname: Zhan
  fullname: Zhan, Xun
  organization: Indiana University
– sequence: 4
  givenname: Yue
  surname: Yao
  fullname: Yao, Yue
  organization: University of Utah
– sequence: 5
  givenname: Liangzi
  surname: Deng
  fullname: Deng, Liangzi
  organization: Texas Center for Superconductivity and Department of Physics
– sequence: 6
  givenname: Heshan
  surname: Hewa-Walpitage
  fullname: Hewa-Walpitage, Heshan
  organization: University of Utah
– sequence: 7
  givenname: Trevor
  surname: Bontke
  fullname: Bontke, Trevor
  organization: Texas Center for Superconductivity and Department of Physics
– sequence: 8
  givenname: Ching-Wu
  orcidid: 0000-0003-3955-7095
  surname: Chu
  fullname: Chu, Ching-Wu
  organization: Lawrence Berkeley National Laboratory
– sequence: 9
  givenname: Yan
  surname: Li
  fullname: Li, Yan
  organization: University of Utah
– sequence: 10
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
  organization: Department of Mechanical and Materials Engineering
– sequence: 11
  givenname: Herbert A
  surname: Fertig
  fullname: Fertig, Herbert A
  organization: Quantum Science and Engineering Center
– sequence: 12
  givenname: Shixiong
  orcidid: 0000-0002-1004-0597
  surname: Zhang
  fullname: Zhang, Shixiong
  email: sxzhang@indiana.edu
  organization: Quantum Science and Engineering Center
BookMark eNqFkMtOHDEQRa0IpPDIH2ThZTY9lB_dM84uQrwkIAiGZNmquMtg1G0PtlsjFvn3NAxhkUVYVUl1zy3p7LKtEAMx9lnATIAUB2jzLGCIPZUyExak0fCB7YhaQdUYI7fe9oX-yHZzfgAAo2rYYb9_YOAdJf4Tsc_8ZlxRyiWNtoyJOIaOL9c-Fx_uuA_8hnpXnYVCyWKPhTp-gXeBCl_7cs8vCRO_jnGoljRMPfjScUVpRaHzduyn8zGlFIcXyOdhn2276S19ep177Pb4aHl4Wp1_Pzk7_HZeoZJ1qURtnFTGYoPglLZag3LazZ2pawvil9SycU2nqXMgzKLBOXWGjJjPgcRCodpjXza9qxQfR8qlHXy21PcYKI65lbVRkzUjYYrqTdSmmHMi166SHzA9tQLaZ9vtZLv9a7t9tT1hX__BrC9YfAwloe_fg2EDP18f4pjCJOP_yB_K9p-b
CitedBy_id crossref_primary_10_1088_1674_1056_adab67
crossref_primary_10_1021_acsnano_5c10466
crossref_primary_10_1021_acs_cgd_5c00094
crossref_primary_10_1038_s41467_022_32737_8
crossref_primary_10_1002_adma_202200117
crossref_primary_10_1088_1674_1056_ad4cd8
crossref_primary_10_1021_jacs_4c09842
crossref_primary_10_1016_j_chphma_2023_04_001
crossref_primary_10_1007_s11467_023_1387_y
crossref_primary_10_1063_5_0277493
crossref_primary_10_1007_s11467_023_1342_y
crossref_primary_10_1088_1361_6633_adef66
crossref_primary_10_1002_adfm_202208528
crossref_primary_10_1038_s41467_025_59266_4
crossref_primary_10_1038_s41467_025_63535_7
crossref_primary_10_1039_D4NR00048J
crossref_primary_10_1016_j_apsusc_2023_157358
crossref_primary_10_1002_smsc_202500028
crossref_primary_10_1103_PhysRevMaterials_7_044406
crossref_primary_10_1063_5_0171308
crossref_primary_10_1016_j_materresbull_2023_112585
crossref_primary_10_1002_adfm_202401304
crossref_primary_10_1002_adfm_202414699
crossref_primary_10_1002_aelm_202400820
crossref_primary_10_1002_adma_202205967
crossref_primary_10_1063_5_0130479
crossref_primary_10_1063_5_0202667
crossref_primary_10_1002_smtd_202201585
crossref_primary_10_1021_acs_jpcc_5c03528
Cites_doi 10.1038/s41598-019-47265-7
10.1002/adma.202103360
10.1038/s41586-018-0631-z
10.1021/acsanm.9b01179
10.1021/acs.nanolett.8b01131
10.1088/0953-8984/1/46/008
10.1038/nnano.2012.224
10.1021/acs.nanolett.8b03321
10.1021/acs.nanolett.9b05128
10.1103/PhysRevB.98.195122
10.1021/acs.nanolett.8b05121
10.1002/adma.201900065
10.1038/s41565-018-0121-3
10.1039/C5CP04835D
10.1038/s41563-018-0040-6
10.1063/1.4914134
10.1103/PhysRevB.49.3962
10.1126/science.aav1937
10.1103/PhysRevB.92.144404
10.1007/BF00560631
10.1038/s41467-020-17320-3
10.1021/acs.nanolett.9b00553
10.1103/PhysRevB.96.134410
10.1021/acsnano.1c00488
10.1103/PhysRevB.96.054406
10.1088/2053-1583/aa75ed
10.1063/1.5143387
10.1038/nature12385
10.1103/PhysRevB.99.144401
10.1021/acsami.0c04447
10.1103/PhysRevMaterials.3.014001
10.1038/s41467-018-04953-8
10.1088/2053-1583/3/2/025035
10.1038/s42254-019-0110-y
10.1038/s41563-020-0791-8
10.1021/acsnano.0c05534
10.1103/PhysRevB.53.7673
10.1038/nature15387
10.1021/acsami.0c07017
10.1021/nn5065716
10.1038/s41467-021-21072-z
10.1088/0953-8984/27/17/176002
10.1016/j.jmmm.2017.08.078
10.1063/1.96254
10.1038/nature22391
10.1038/s41928-018-0087-z
10.1007/s12274-020-3021-4
10.1007/s12274-017-1913-8
10.1126/science.aar4851
10.1021/acs.nanolett.0c02381
10.1103/PhysRevLett.17.1133
10.1039/C8NR02272K
10.1016/j.jssc.2003.09.041
10.1038/s41565-018-0186-z
10.1039/D0NR04108D
10.1021/acs.nanolett.8b01552
10.1088/2053-1583/aa7034
10.1038/s41565-018-0135-x
10.1038/s41467-021-22777-x
10.1209/0295-5075/29/3/011
10.1038/s41565-019-0438-6
10.1088/2053-1583/abfaae
10.1038/s41928-019-0232-3
10.1038/nature22060
10.3891/acta.chem.scand.24-3495
10.1103/PhysRevB.100.245114
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acs.nanolett.1c02940
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 9525
ExternalDocumentID 10_1021_acs_nanolett_1c02940
c986993528
GroupedDBID -
123
4.4
55A
5VS
7~N
AABXI
ABFRP
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
F5P
GGK
GNL
IH9
IHE
JG
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
.K2
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
CITATION
CUPRZ
ED~
JG~
7X8
ID FETCH-LOGICAL-a325t-159f239ca6a0f34c4403f4f7f955c01b2426f6d4edf01986a7ed9e91770e183a3
IEDL.DBID ACS
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000756421600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-6984
1530-6992
IngestDate Wed Oct 01 14:30:36 EDT 2025
Tue Nov 18 21:31:37 EST 2025
Sat Nov 29 06:17:21 EST 2025
Fri Nov 26 04:26:48 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords van der Waals materials
chromium telluride
2D magnets
self-intercalation
twisting
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a325t-159f239ca6a0f34c4403f4f7f955c01b2426f6d4edf01986a7ed9e91770e183a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1004-0597
0000-0003-3955-7095
PQID 2593029920
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2593029920
crossref_primary_10_1021_acs_nanolett_1c02940
crossref_citationtrail_10_1021_acs_nanolett_1c02940
acs_journals_10_1021_acs_nanolett_1c02940
PublicationCentury 2000
PublicationDate 20211124
2021-11-24
PublicationDateYYYYMMDD 2021-11-24
PublicationDate_xml – month: 11
  year: 2021
  text: 20211124
  day: 24
PublicationDecade 2020
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref54/cit54
  doi: 10.1038/s41598-019-47265-7
– ident: ref64/cit64
  doi: 10.1002/adma.202103360
– ident: ref3/cit3
  doi: 10.1038/s41586-018-0631-z
– ident: ref55/cit55
  doi: 10.1021/acsanm.9b01179
– ident: ref31/cit31
  doi: 10.1021/acs.nanolett.8b01131
– ident: ref63/cit63
  doi: 10.1088/0953-8984/1/46/008
– ident: ref17/cit17
  doi: 10.1038/nnano.2012.224
– ident: ref24/cit24
  doi: 10.1021/acs.nanolett.8b03321
– ident: ref60/cit60
  doi: 10.1021/acs.nanolett.9b05128
– ident: ref47/cit47
  doi: 10.1103/PhysRevB.98.195122
– ident: ref43/cit43
  doi: 10.1021/acs.nanolett.8b05121
– ident: ref8/cit8
  doi: 10.1002/adma.201900065
– ident: ref13/cit13
  doi: 10.1038/s41565-018-0121-3
– ident: ref15/cit15
  doi: 10.1039/C5CP04835D
– ident: ref68/cit68
– ident: ref12/cit12
  doi: 10.1038/s41563-018-0040-6
– ident: ref42/cit42
  doi: 10.1063/1.4914134
– ident: ref10/cit10
  doi: 10.1103/PhysRevB.49.3962
– ident: ref28/cit28
  doi: 10.1126/science.aav1937
– ident: ref40/cit40
  doi: 10.1103/PhysRevB.92.144404
– ident: ref67/cit67
  doi: 10.1007/BF00560631
– ident: ref25/cit25
  doi: 10.1038/s41467-020-17320-3
– ident: ref29/cit29
  doi: 10.1021/acs.nanolett.9b00553
– ident: ref46/cit46
  doi: 10.1103/PhysRevB.96.134410
– ident: ref33/cit33
  doi: 10.1021/acsnano.1c00488
– ident: ref41/cit41
  doi: 10.1103/PhysRevB.96.054406
– ident: ref23/cit23
  doi: 10.1088/2053-1583/aa75ed
– ident: ref56/cit56
  doi: 10.1063/1.5143387
– ident: ref11/cit11
  doi: 10.1038/nature12385
– ident: ref26/cit26
  doi: 10.1103/PhysRevB.99.144401
– ident: ref58/cit58
  doi: 10.1021/acsami.0c04447
– ident: ref44/cit44
  doi: 10.1103/PhysRevMaterials.3.014001
– ident: ref21/cit21
  doi: 10.1038/s41467-018-04953-8
– ident: ref39/cit39
  doi: 10.1088/2053-1583/3/2/025035
– ident: ref5/cit5
  doi: 10.1038/s42254-019-0110-y
– ident: ref6/cit6
  doi: 10.1038/s41563-020-0791-8
– ident: ref49/cit49
  doi: 10.1021/acsnano.0c05534
– ident: ref66/cit66
  doi: 10.1103/PhysRevB.53.7673
– ident: ref18/cit18
  doi: 10.1038/nature15387
– ident: ref36/cit36
  doi: 10.1021/acsami.0c07017
– ident: ref50/cit50
  doi: 10.1021/nn5065716
– ident: ref59/cit59
  doi: 10.1038/s41467-021-21072-z
– ident: ref35/cit35
  doi: 10.1088/0953-8984/27/17/176002
– ident: ref52/cit52
  doi: 10.1016/j.jmmm.2017.08.078
– ident: ref9/cit9
  doi: 10.1063/1.96254
– ident: ref2/cit2
  doi: 10.1038/nature22391
– ident: ref27/cit27
  doi: 10.1038/s41928-018-0087-z
– ident: ref34/cit34
  doi: 10.1007/s12274-020-3021-4
– ident: ref57/cit57
  doi: 10.1007/s12274-017-1913-8
– ident: ref19/cit19
  doi: 10.1126/science.aar4851
– ident: ref30/cit30
  doi: 10.1021/acs.nanolett.0c02381
– ident: ref61/cit61
  doi: 10.1103/PhysRevLett.17.1133
– ident: ref53/cit53
  doi: 10.1039/C8NR02272K
– ident: ref65/cit65
  doi: 10.1016/j.jssc.2003.09.041
– ident: ref38/cit38
  doi: 10.1038/s41565-018-0186-z
– ident: ref51/cit51
  doi: 10.1039/D0NR04108D
– ident: ref20/cit20
  doi: 10.1021/acs.nanolett.8b01552
– ident: ref14/cit14
  doi: 10.1088/2053-1583/aa7034
– ident: ref16/cit16
  doi: 10.1038/s41565-018-0135-x
– ident: ref32/cit32
  doi: 10.1038/s41467-021-22777-x
– ident: ref37/cit37
  doi: 10.1209/0295-5075/29/3/011
– ident: ref4/cit4
  doi: 10.1038/s41565-019-0438-6
– ident: ref45/cit45
  doi: 10.1088/2053-1583/abfaae
– ident: ref22/cit22
  doi: 10.1038/s41928-019-0232-3
– ident: ref7/cit7
– ident: ref1/cit1
  doi: 10.1038/nature22060
– ident: ref62/cit62
  doi: 10.3891/acta.chem.scand.24-3495
– ident: ref48/cit48
  doi: 10.1103/PhysRevB.100.245114
SSID ssj0009350
Score 2.55089
Snippet The emergence of van der Waals (vdW) magnets has created unprecedented opportunities to manipulate magnetism for advanced spintronics based upon all-vdW...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9517
Title Van der Waals Superstructure and Twisting in Self-Intercalated Magnet with Near Room-Temperature Perpendicular Ferromagnetism
URI http://dx.doi.org/10.1021/acs.nanolett.1c02940
https://www.proquest.com/docview/2593029920
Volume 21
WOSCitedRecordID wos000756421600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1530-6992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009350
  issn: 1530-6984
  databaseCode: ACS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYK5UAPbXkJ2oKM1AsHw67tffiIUCMuRKhJS26riT1GkYKDdpP21P_e8WZTChJCXFf2yutvHt94vDOMfc0xI1RVTPlDKTSMlTBGO-ESr5yReZaBbptNFP1-ORqZ64dA8WkGX6ZnYJvTAGFGnzE_TW0ijaYQ_a0kphsl-vxi8FBkV7UdWUmJKSQypV79KvfMW6JDss1jh_TYHrdOpvfhtcv7yN53dJKfL_HfYm8wbLN3_xUZ3GF_fkLgDmt-AyRqfLC4j4wvVo1d1MghOD78HRU93PJJ4AOcetEeExJ4xEMdv4LbgHMeD2x5n_SCfyeuLYZIfHtZj5lfYx076U7aK628h3U9u2snTZq7Xfaj9214cSm6pgsClMzmguiNl8pYyIHg0lbrRHntC2-yzCbpOLp0nzuNzhM7LHMo0BmkoK9IkMwDqD22HmYB9xlPDZaQgFLO5xpUYQyZE1uMrZUqg8IfsBPavapTmqZq8-EyreLD1ZZW3ZYeMLVCqbJd9fLYRGP6wizxb9b9snrHC-OPVwJQkZrF3AkEnC2aiqJERUOMTD69YtWf2aaMd2DSVEj9ha0TuHjINuwvAqA-YmvFqDxqRfgvxwLyEg
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqggQcKK-KQgEjceFgSGzn4WNVdVVEu6rYBXqLZu1xtVLrrZJdOPHfGXsT2h5QBVfLdpx5eGY89jeMvSuxIK6qmPKHWmiYKWGMdsJlXjkjy6IAnYpNVONxfXpqTjZYMbyFoUV0NFOXkvhX6AL5x9gWICzob5YfcptJoylSv0NfMlG89_YnV1i7KhVmJV2myMjUengx95dZol2y3U27dHNbTrZmtPWfq3zEHvbOJd9bS8NjtoHhCXtwDXLwKfv1DQJ32PLvQILHJ6vL6P9FDNlVixyC49OfUe3DGZ8HPsFzL9KhIbGSvFLHj-Es4JLH41s-Ji3hX8jzFlMk73uNzsxPsI11defpgisfYdsuLtKgeXfxjH0dHUz3D0VfgkGAksVSkLPjpTIWSiDmaat1prz2lTdFYbN8Fg28L51G58lXrEuo0BmkELDKkDYLUNtsMywCPmc8N1hDBko5X2pQlTG0udhqZq1UBVR-h70n6jW9CnVNyo7LvImNA0mbnqQ7TA3MamyPZR5LapzfMkr8GXW5xvK4pf_bQQ4aUrqYSYGAi1XXUMyoqIuR2Yt_WPUbdu9wenzUHH0af37J7st4OybPhdS7bJMYja_YXfuDmNG-TvL8G0Jj-ZA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqUiE40PIShVKMxIWDYdf2PnysChFVIYpIgN5WE3tcRWqdaDeBE_-dsbOB9oAqxNWyLa9nxvONx_sNY69KLEiqKqb8oRYapkoYo51wmVfOyLIoQKdiE9VwWJ-dmdGVUl-0iI5m6lISP1r1wvmeYSB_G9sDhDl90fJNbjNpNEXrtwry6VHFj47Hf_h2VSrOSvZM0ZGp9eavub_MEn2T7a77putHc_I3g93_WOkeu9eDTH601or7bAvDA3b3CvXgQ_bzKwTusOXfgBSQj1eLiAMjl-yqRQ7B8cmPaP7hnM8CH-OFF-nykERK6NTxT3AecMnjNS4fkrXwz4TAxQQJha9ZmvkI21hfd5YeuvIBtu38Mg2adZeP2JfB-8nxB9GXYhCgZLEUBHq8VMZCCSREbbXOlNe-8qYobJZPo6P3pdPoPGHGuoQKnUEKBasM6dAA9Zhth3nAJ4znBmvIQCnnSw2qMoYOGVtNrZWqgMrvs9e0e01vSl2TsuQyb2LjZkubfkv3mdoIrLE9p3ksrXFxwyjxe9RizelxQ_-XG11oyPhiRgUCzlddQ7Gjoi5GZk__YdUv2O3Ru0Hz8WR4-ozdkfGRTJ4LqQ_YNskZn7Md-51k0R4mlf4FIr78Cg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Van+der+Waals+Superstructure+and+Twisting+in+Self-Intercalated+Magnet+with+Near+Room-Temperature+Perpendicular+Ferromagnetism&rft.jtitle=Nano+letters&rft.au=Coughlin%2C+Amanda+L&rft.au=Xie%2C+Dongyue&rft.au=Zhan%2C+Xun&rft.au=Yao%2C+Yue&rft.date=2021-11-24&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=21&rft.issue=22&rft.spage=9517&rft.epage=9525&rft_id=info:doi/10.1021%2Facs.nanolett.1c02940&rft.externalDocID=c986993528
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon