PaCS-Q: Python Toolkits for Path Sampling in MD and QM/MM MD Simulation

PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly integrated with the AMBER MD suite, it automates QM/MM MD simulations using the parallel cascade selection (PaCS) algorithm, enabling efficien...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of chemical information and modeling Ročník 65; číslo 13; s. 6441
Hlavní autoři: Duan, Lian, Hengphasatporn, Kowit, Shigeta, Yasuteru
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 14.07.2025
Témata:
ISSN:1549-960X, 1549-960X
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly integrated with the AMBER MD suite, it automates QM/MM MD simulations using the parallel cascade selection (PaCS) algorithm, enabling efficient exploration of reaction pathways without predefined reaction coordinates. PaCS-Q supports both RMSD- and distance-based sampling, which is ideal for studying covalent reactions and ligand binding/unbinding events. A key feature is its ability to automatically generate QM input files for Gaussian and ORCA directly from representative structures, streamlining the transition from MD to quantum calculations. With built-in tools for structure analysis and energy profiling, PaCS-Q minimizes setup complexity and enhances reproducibility. Easy to install via pip and compatible with Unix-based systems, PaCS-Q offers a practical, versatile solution for researchers in computational chemistry and drug discovery, enabling advanced simulations with speed, accuracy, and minimal effort. The PaCS-Q Python toolkit publicly available at https://github.com/nyelidl/PaCS-Q/.
AbstractList PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly integrated with the AMBER MD suite, it automates QM/MM MD simulations using the parallel cascade selection (PaCS) algorithm, enabling efficient exploration of reaction pathways without predefined reaction coordinates. PaCS-Q supports both RMSD- and distance-based sampling, which is ideal for studying covalent reactions and ligand binding/unbinding events. A key feature is its ability to automatically generate QM input files for Gaussian and ORCA directly from representative structures, streamlining the transition from MD to quantum calculations. With built-in tools for structure analysis and energy profiling, PaCS-Q minimizes setup complexity and enhances reproducibility. Easy to install via pip and compatible with Unix-based systems, PaCS-Q offers a practical, versatile solution for researchers in computational chemistry and drug discovery, enabling advanced simulations with speed, accuracy, and minimal effort. The PaCS-Q Python toolkit publicly available at https://github.com/nyelidl/PaCS-Q/.
PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly integrated with the AMBER MD suite, it automates QM/MM MD simulations using the parallel cascade selection (PaCS) algorithm, enabling efficient exploration of reaction pathways without predefined reaction coordinates. PaCS-Q supports both RMSD- and distance-based sampling, which is ideal for studying covalent reactions and ligand binding/unbinding events. A key feature is its ability to automatically generate QM input files for Gaussian and ORCA directly from representative structures, streamlining the transition from MD to quantum calculations. With built-in tools for structure analysis and energy profiling, PaCS-Q minimizes setup complexity and enhances reproducibility. Easy to install via pip and compatible with Unix-based systems, PaCS-Q offers a practical, versatile solution for researchers in computational chemistry and drug discovery, enabling advanced simulations with speed, accuracy, and minimal effort. The PaCS-Q Python toolkit publicly available at https://github.com/nyelidl/PaCS-Q/.PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly integrated with the AMBER MD suite, it automates QM/MM MD simulations using the parallel cascade selection (PaCS) algorithm, enabling efficient exploration of reaction pathways without predefined reaction coordinates. PaCS-Q supports both RMSD- and distance-based sampling, which is ideal for studying covalent reactions and ligand binding/unbinding events. A key feature is its ability to automatically generate QM input files for Gaussian and ORCA directly from representative structures, streamlining the transition from MD to quantum calculations. With built-in tools for structure analysis and energy profiling, PaCS-Q minimizes setup complexity and enhances reproducibility. Easy to install via pip and compatible with Unix-based systems, PaCS-Q offers a practical, versatile solution for researchers in computational chemistry and drug discovery, enabling advanced simulations with speed, accuracy, and minimal effort. The PaCS-Q Python toolkit publicly available at https://github.com/nyelidl/PaCS-Q/.
Author Duan, Lian
Hengphasatporn, Kowit
Shigeta, Yasuteru
Author_xml – sequence: 1
  givenname: Lian
  orcidid: 0009-0001-6713-587X
  surname: Duan
  fullname: Duan, Lian
  organization: Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
– sequence: 2
  givenname: Kowit
  orcidid: 0000-0001-8501-3844
  surname: Hengphasatporn
  fullname: Hengphasatporn, Kowit
  organization: Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
– sequence: 3
  givenname: Yasuteru
  orcidid: 0000-0002-3219-6007
  surname: Shigeta
  fullname: Shigeta, Yasuteru
  organization: Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40568793$$D View this record in MEDLINE/PubMed
BookMark eNpNj89PwjAYhhuDkR9692R69DJo-22FejOoaMIiBEy8LR9tJ8VtxXU78N-LERNP7_MmT97k7ZNO5StLyDVnQ84EH6EOw5125TDRjCmQZ6THk1hFSrL3zj_ukn4IO8YAlBQXpBuzRE7GCnpktsDpKlre0cWh2fqKrr0vPl0TaO5rusBmS1dY7gtXfVBX0fSBYmXoMh2l6U9ZubItsHG-uiTnORbBXp1yQN6eHtfT52j-OnuZ3s8jBK6ayEyAyVxJbpWWUguQhnELca7yeAMSAayVYpIjGG0SHh_ZICZSogZh0YgBuf3d3df-q7WhyUoXtC0KrKxvQwZCxELCeAJH9eaktpvSmmxfuxLrQ_Z3XnwDbhFcpA
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.jcim.5c00936
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-960X
ExternalDocumentID 40568793
Genre Journal Article
GroupedDBID ---
-~X
4.4
55A
5GY
5VS
7~N
AABXI
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACIWK
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CGR
CUPRZ
CUY
CVF
D0L
DU5
EBS
ECM
ED~
EIF
F5P
GGK
GNL
IH9
JG~
NPM
P2P
PQQKQ
RNS
ROL
UI2
VF5
VG9
W1F
7X8
ID FETCH-LOGICAL-a319t-d8306f961e9c66c236d01e34f9f4b36a33ee628fa3dcd514628daa566ac32ead2
IEDL.DBID 7X8
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001518522100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-960X
IngestDate Thu Jun 26 17:30:51 EDT 2025
Tue Jul 15 01:30:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a319t-d8306f961e9c66c236d01e34f9f4b36a33ee628fa3dcd514628daa566ac32ead2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0001-6713-587X
0000-0001-8501-3844
0000-0002-3219-6007
PMID 40568793
PQID 3224263783
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3224263783
pubmed_primary_40568793
PublicationCentury 2000
PublicationDate 2025-07-14
PublicationDateYYYYMMDD 2025-07-14
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of chemical information and modeling
PublicationTitleAlternate J Chem Inf Model
PublicationYear 2025
SSID ssj0033962
Score 2.4681575
Snippet PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 6441
SubjectTerms Algorithms
Molecular Dynamics Simulation
Quantum Theory
Software
Title PaCS-Q: Python Toolkits for Path Sampling in MD and QM/MM MD Simulation
URI https://www.ncbi.nlm.nih.gov/pubmed/40568793
https://www.proquest.com/docview/3224263783
Volume 65
WOSCitedRecordID wos001518522100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7eQF-8X-aNCL5ms02WNr6ITKcvHR2b0LeR5iJV1047Bf-9J12nT4LgS0kfCs3hOydfcsL3IXSuuQMGsyQ0kG7ACDgRVFhiFdNC2ZQrZiuziaDXC5NExPWBW1lfq5zXxKpQ60K5M_IWAM9piwchvZq8Euca5bqrtYXGIlqmQGUcqoPku4tAqagMRZ0KGQGmntRtSljWWlKVzSeVjZtt5Tb1_HeCWS003Y3__uImWq8pJr6eYWILLZh8G6125s5uO-gulp0B6V_i-NMpB-BhUbw8Z9MSA4HFMVBCPJDuonn-iLMcRzdY5hr3o1YUuZdBNq4tv3bRQ_d22LkntaECkZBpU6JD2CBYwT0jFOfKp1xfeIYyKyxLKZeUGsP90EqqlQYmBWMtJRA-qagPkPP30FJe5OYAYZH6PBBSKmCYLLAmVdpLladYOzVUc6-BzuYxGsHsXBdC5qZ4L0c_UWqg_VmgR5OZssbIYSWEinH4h6-P0JrvvHidyCU7RssW0tWcoBX1Mc3Kt9MKCfDsxdEXf3m8ww
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PaCS-Q%3A+Python+Toolkits+for+Path+Sampling+in+MD+and+QM%2FMM+MD+Simulation&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Duan%2C+Lian&rft.au=Hengphasatporn%2C+Kowit&rft.au=Shigeta%2C+Yasuteru&rft.date=2025-07-14&rft.issn=1549-960X&rft.eissn=1549-960X&rft_id=info:doi/10.1021%2Facs.jcim.5c00936&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-960X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-960X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-960X&client=summon