PaCS-Q: Python Toolkits for Path Sampling in MD and QM/MM MD Simulation
PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly integrated with the AMBER MD suite, it automates QM/MM MD simulations using the parallel cascade selection (PaCS) algorithm, enabling efficien...
Uloženo v:
| Vydáno v: | Journal of chemical information and modeling Ročník 65; číslo 13; s. 6441 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
14.07.2025
|
| Témata: | |
| ISSN: | 1549-960X, 1549-960X |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly integrated with the AMBER MD suite, it automates QM/MM MD simulations using the parallel cascade selection (PaCS) algorithm, enabling efficient exploration of reaction pathways without predefined reaction coordinates. PaCS-Q supports both RMSD- and distance-based sampling, which is ideal for studying covalent reactions and ligand binding/unbinding events. A key feature is its ability to automatically generate QM input files for Gaussian and ORCA directly from representative structures, streamlining the transition from MD to quantum calculations. With built-in tools for structure analysis and energy profiling, PaCS-Q minimizes setup complexity and enhances reproducibility. Easy to install via pip and compatible with Unix-based systems, PaCS-Q offers a practical, versatile solution for researchers in computational chemistry and drug discovery, enabling advanced simulations with speed, accuracy, and minimal effort. The PaCS-Q Python toolkit publicly available at https://github.com/nyelidl/PaCS-Q/. |
|---|---|
| AbstractList | PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly integrated with the AMBER MD suite, it automates QM/MM MD simulations using the parallel cascade selection (PaCS) algorithm, enabling efficient exploration of reaction pathways without predefined reaction coordinates. PaCS-Q supports both RMSD- and distance-based sampling, which is ideal for studying covalent reactions and ligand binding/unbinding events. A key feature is its ability to automatically generate QM input files for Gaussian and ORCA directly from representative structures, streamlining the transition from MD to quantum calculations. With built-in tools for structure analysis and energy profiling, PaCS-Q minimizes setup complexity and enhances reproducibility. Easy to install via pip and compatible with Unix-based systems, PaCS-Q offers a practical, versatile solution for researchers in computational chemistry and drug discovery, enabling advanced simulations with speed, accuracy, and minimal effort. The PaCS-Q Python toolkit publicly available at https://github.com/nyelidl/PaCS-Q/. PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly integrated with the AMBER MD suite, it automates QM/MM MD simulations using the parallel cascade selection (PaCS) algorithm, enabling efficient exploration of reaction pathways without predefined reaction coordinates. PaCS-Q supports both RMSD- and distance-based sampling, which is ideal for studying covalent reactions and ligand binding/unbinding events. A key feature is its ability to automatically generate QM input files for Gaussian and ORCA directly from representative structures, streamlining the transition from MD to quantum calculations. With built-in tools for structure analysis and energy profiling, PaCS-Q minimizes setup complexity and enhances reproducibility. Easy to install via pip and compatible with Unix-based systems, PaCS-Q offers a practical, versatile solution for researchers in computational chemistry and drug discovery, enabling advanced simulations with speed, accuracy, and minimal effort. The PaCS-Q Python toolkit publicly available at https://github.com/nyelidl/PaCS-Q/.PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly integrated with the AMBER MD suite, it automates QM/MM MD simulations using the parallel cascade selection (PaCS) algorithm, enabling efficient exploration of reaction pathways without predefined reaction coordinates. PaCS-Q supports both RMSD- and distance-based sampling, which is ideal for studying covalent reactions and ligand binding/unbinding events. A key feature is its ability to automatically generate QM input files for Gaussian and ORCA directly from representative structures, streamlining the transition from MD to quantum calculations. With built-in tools for structure analysis and energy profiling, PaCS-Q minimizes setup complexity and enhances reproducibility. Easy to install via pip and compatible with Unix-based systems, PaCS-Q offers a practical, versatile solution for researchers in computational chemistry and drug discovery, enabling advanced simulations with speed, accuracy, and minimal effort. The PaCS-Q Python toolkit publicly available at https://github.com/nyelidl/PaCS-Q/. |
| Author | Duan, Lian Hengphasatporn, Kowit Shigeta, Yasuteru |
| Author_xml | – sequence: 1 givenname: Lian orcidid: 0009-0001-6713-587X surname: Duan fullname: Duan, Lian organization: Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan – sequence: 2 givenname: Kowit orcidid: 0000-0001-8501-3844 surname: Hengphasatporn fullname: Hengphasatporn, Kowit organization: Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand – sequence: 3 givenname: Yasuteru orcidid: 0000-0002-3219-6007 surname: Shigeta fullname: Shigeta, Yasuteru organization: Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40568793$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj89PwjAYhhuDkR9692R69DJo-22FejOoaMIiBEy8LR9tJ8VtxXU78N-LERNP7_MmT97k7ZNO5StLyDVnQ84EH6EOw5125TDRjCmQZ6THk1hFSrL3zj_ukn4IO8YAlBQXpBuzRE7GCnpktsDpKlre0cWh2fqKrr0vPl0TaO5rusBmS1dY7gtXfVBX0fSBYmXoMh2l6U9ZubItsHG-uiTnORbBXp1yQN6eHtfT52j-OnuZ3s8jBK6ayEyAyVxJbpWWUguQhnELca7yeAMSAayVYpIjGG0SHh_ZICZSogZh0YgBuf3d3df-q7WhyUoXtC0KrKxvQwZCxELCeAJH9eaktpvSmmxfuxLrQ_Z3XnwDbhFcpA |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1021/acs.jcim.5c00936 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1549-960X |
| ExternalDocumentID | 40568793 |
| Genre | Journal Article |
| GroupedDBID | --- -~X 4.4 55A 5GY 5VS 7~N AABXI ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFS ACIWK ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CGR CUPRZ CUY CVF D0L DU5 EBS ECM ED~ EIF F5P GGK GNL IH9 JG~ NPM P2P PQQKQ RNS ROL UI2 VF5 VG9 W1F 7X8 |
| ID | FETCH-LOGICAL-a319t-d8306f961e9c66c236d01e34f9f4b36a33ee628fa3dcd514628daa566ac32ead2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001518522100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1549-960X |
| IngestDate | Thu Jun 26 17:30:51 EDT 2025 Tue Jul 15 01:30:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a319t-d8306f961e9c66c236d01e34f9f4b36a33ee628fa3dcd514628daa566ac32ead2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0009-0001-6713-587X 0000-0001-8501-3844 0000-0002-3219-6007 |
| PMID | 40568793 |
| PQID | 3224263783 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3224263783 pubmed_primary_40568793 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-14 |
| PublicationDateYYYYMMDD | 2025-07-14 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of chemical information and modeling |
| PublicationTitleAlternate | J Chem Inf Model |
| PublicationYear | 2025 |
| SSID | ssj0033962 |
| Score | 2.4681575 |
| Snippet | PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 6441 |
| SubjectTerms | Algorithms Molecular Dynamics Simulation Quantum Theory Software |
| Title | PaCS-Q: Python Toolkits for Path Sampling in MD and QM/MM MD Simulation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40568793 https://www.proquest.com/docview/3224263783 |
| Volume | 65 |
| WOSCitedRecordID | wos001518522100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7eQF-8X-aNCL5ms02WNr6ITKcvHR2b0LeR5iJV1047Bf-9J12nT4LgS0kfCs3hOydfcsL3IXSuuQMGsyQ0kG7ACDgRVFhiFdNC2ZQrZiuziaDXC5NExPWBW1lfq5zXxKpQ60K5M_IWAM9piwchvZq8Euca5bqrtYXGIlqmQGUcqoPku4tAqagMRZ0KGQGmntRtSljWWlKVzSeVjZtt5Tb1_HeCWS003Y3__uImWq8pJr6eYWILLZh8G6125s5uO-gulp0B6V_i-NMpB-BhUbw8Z9MSA4HFMVBCPJDuonn-iLMcRzdY5hr3o1YUuZdBNq4tv3bRQ_d22LkntaECkZBpU6JD2CBYwT0jFOfKp1xfeIYyKyxLKZeUGsP90EqqlQYmBWMtJRA-qagPkPP30FJe5OYAYZH6PBBSKmCYLLAmVdpLladYOzVUc6-BzuYxGsHsXBdC5qZ4L0c_UWqg_VmgR5OZssbIYSWEinH4h6-P0JrvvHidyCU7RssW0tWcoBX1Mc3Kt9MKCfDsxdEXf3m8ww |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PaCS-Q%3A+Python+Toolkits+for+Path+Sampling+in+MD+and+QM%2FMM+MD+Simulation&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Duan%2C+Lian&rft.au=Hengphasatporn%2C+Kowit&rft.au=Shigeta%2C+Yasuteru&rft.date=2025-07-14&rft.issn=1549-960X&rft.eissn=1549-960X&rft_id=info:doi/10.1021%2Facs.jcim.5c00936&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-960X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-960X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-960X&client=summon |