NFVdeep adaptive online service function chain deployment with deep reinforcement learning
With the evolution of network function virtualization (NFV), diverse network services can be flexibly offered as service function chains (SFCs) consisted of different virtual network functions (VNFs). However, network state and traffic typically exhibit unpredictable variations due to stochastically...
Uloženo v:
| Vydáno v: | Proceedings of the International Symposium on Quality of Service s. 1 - 10 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY, USA
ACM
24.06.2019
|
| Edice: | ACM Other Conferences |
| Témata: | |
| ISBN: | 9781450367783, 145036778X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With the evolution of network function virtualization (NFV), diverse network services can be flexibly offered as service function chains (SFCs) consisted of different virtual network functions (VNFs). However, network state and traffic typically exhibit unpredictable variations due to stochastically arriving requests with different quality of service (QoS) requirements. Thus, an adaptive online SFC deployment approach is needed to handle the real-time network variations and various service requests. In this paper, we firstly introduce a Markov decision process (MDP) model to capture the dynamic network state transitions. In order to jointly minimize the operation cost of NFV providers and maximize the total throughput of requests, we propose NFVdeep, an adaptive, online, deep reinforcement learning approach to automatically deploy SFCs for requests with different QoS requirements. Specifically, we use a serialization-and-backtracking method to effectively deal with large discrete action space. We also adopt a policy gradient based method to improve the training efficiency and convergence to optimality. Extensive experimental results demonstrate that NFVdeep converges fast in the training process and responds rapidly to arriving requests especially in large, frequently transferred network state space. Consequently, NFVdeep surpasses the state-of-the-art methods by 32.59% higher accepted throughput and 33.29% lower operation cost on average. |
|---|---|
| AbstractList | With the evolution of network function virtualization (NFV), diverse network services can be flexibly offered as service function chains (SFCs) consisted of different virtual network functions (VNFs). However, network state and traffic typically exhibit unpredictable variations due to stochastically arriving requests with different quality of service (QoS) requirements. Thus, an adaptive online SFC deployment approach is needed to handle the real-time network variations and various service requests. In this paper, we firstly introduce a Markov decision process (MDP) model to capture the dynamic network state transitions. In order to jointly minimize the operation cost of NFV providers and maximize the total throughput of requests, we propose NFVdeep, an adaptive, online, deep reinforcement learning approach to automatically deploy SFCs for requests with different QoS requirements. Specifically, we use a serialization-and-backtracking method to effectively deal with large discrete action space. We also adopt a policy gradient based method to improve the training efficiency and convergence to optimality. Extensive experimental results demonstrate that NFVdeep converges fast in the training process and responds rapidly to arriving requests especially in large, frequently transferred network state space. Consequently, NFVdeep surpasses the state-of-the-art methods by 32.59% higher accepted throughput and 33.29% lower operation cost on average. |
| Author | Xiao, Yikai Zhang, Zhongxing Zhang, Jiaxing Wang, Jia Zhao, Miao Zhang, Qixia Liu, Fangming |
| Author_xml | – sequence: 1 givenname: Yikai surname: Xiao fullname: Xiao, Yikai organization: Huazhong University of Science and Technology, China – sequence: 2 givenname: Qixia surname: Zhang fullname: Zhang, Qixia organization: Huazhong University of Science and Technology, China – sequence: 3 givenname: Fangming surname: Liu fullname: Liu, Fangming email: fmliu@hust.edu.cn organization: Huazhong University of Science and Technology, China – sequence: 4 givenname: Jia surname: Wang fullname: Wang, Jia organization: The Hong Kong Polytechnic University, Hong Kong – sequence: 5 givenname: Miao surname: Zhao fullname: Zhao, Miao organization: The Hong Kong Polytechnic University, Hong Kong – sequence: 6 givenname: Zhongxing surname: Zhang fullname: Zhang, Zhongxing organization: Huazhong University of Science and Technology, China – sequence: 7 givenname: Jiaxing surname: Zhang fullname: Zhang, Jiaxing organization: Huazhong University of Science and Technology, China |
| BookMark | eNqNj7tOxDAQRY0A8VhSU_ADNAkeTzy2S7RiAWkFDdBafoylALtZJTT8PUGbiorq6s65Gumci6Ntv2UhLkE2AK2-QVSkrG6mdFLTgaicsROQSMZYPPzTT0U1ju9SSmUNtBLPxMnT6i0z7y7EcQmfI1dzLsTr6u5l-VCvn-8fl7frOiDYr5pURBswFR0SuQLaFCqxzUXBdLDFZGATgySXQDERJJucAYwpqYyYcSGu9n87Zva7oduE4ds7SZawnej1noa08bHvP0YP0v-a-tnUz6bTtPnn1Meh44I_JmhP1A |
| ContentType | Conference Proceeding |
| Copyright | 2019 ACM |
| Copyright_xml | – notice: 2019 ACM |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1145/3326285.3329056 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781450367783 145036778X |
| EndPage | 10 |
| ExternalDocumentID | 9068634 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN ABLEC ACM ADPZR ALMA_UNASSIGNED_HOLDINGS APO BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK GUFHI IEGSK OCL RIE RIL AAWTH LHSKQ |
| ID | FETCH-LOGICAL-a318t-62b38a3cf5ac69f157f6fb4df21ac68f7d1e7ba069c12e661c8c9713bcc2d33d3 |
| IEDL.DBID | RIE |
| ISBN | 9781450367783 145036778X |
| ISICitedReferencesCount | 156 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000709368800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Tue Nov 04 05:03:12 EST 2025 Wed Jan 31 06:47:06 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Keywords | service function chain deep reinforcement learning network function virtualization (NFV) QoS-aware resource management |
| Language | English |
| License | Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org |
| LinkModel | DirectLink |
| MeetingName | IWQoS '19: IEEE/ACM International Symposium on Quality of Service |
| MergedId | FETCHMERGED-LOGICAL-a318t-62b38a3cf5ac69f157f6fb4df21ac68f7d1e7ba069c12e661c8c9713bcc2d33d3 |
| PageCount | 10 |
| ParticipantIDs | acm_books_10_1145_3326285_3329056 ieee_primary_9068634 acm_books_10_1145_3326285_3329056_brief |
| PublicationCentury | 2000 |
| PublicationDate | 20190624 2019-June |
| PublicationDateYYYYMMDD | 2019-06-24 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 20190624 day: 24 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY, USA |
| PublicationPlace_xml | – name: New York, NY, USA |
| PublicationSeriesTitle | ACM Other Conferences |
| PublicationTitle | Proceedings of the International Symposium on Quality of Service |
| PublicationTitleAbbrev | IWQoS |
| PublicationYear | 2019 |
| Publisher | ACM |
| Publisher_xml | – name: ACM |
| SSID | ssj0002871403 |
| Score | 2.5017133 |
| Snippet | With the evolution of network function virtualization (NFV), diverse network services can be flexibly offered as service function chains (SFCs) consisted of... |
| SourceID | ieee acm |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Computing methodologies -- Machine learning Deep Reinforcement Learning Network Function Virtualization (NFV) Networks -- Network algorithms -- Control path algorithms -- Network resources allocation Networks -- Network components -- Middle boxes -- network appliances Networks -- Network properties -- Network dynamics QoS-Aware Resource Management Service Function Chain |
| Subtitle | adaptive online service function chain deployment with deep reinforcement learning |
| Title | NFVdeep |
| URI | https://ieeexplore.ieee.org/document/9068634 |
| WOSCitedRecordID | wos000709368800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwHA7b8OBJZRPniwiCF7u1eTSpN5kWT2OIysBDyeMX3cGt7OHfb9KWiSCIp6YhNPC16e-RfN8PoUvNwL9ZRqJEWR4xI2ikLNWRBBPk4lRMrK2KTYjxWE6n2aSFrrdcGACoDp_BIDSrvXy7MJuQKhtmgc9AWRu1hRA1V2ubTwmeP4tpo96TMD6k3jMhkg_8NYtDgeq2Mh8_iqhUNiTf-9_s-6j3TcbDk62ZOUAtmHfR6zh_sQDlDb61qgy_LFyLhuJm8ePcG6wAOh69--Af30Go7BtmwCH16u-hxI9Q6aaaKkWIG6nVtx56zu-fRg9RUychUn5FrqOUaCoVNY4rk2Yu4cKlTjPrSOI7pBM2AaFVnGYmIeANspEm88GpNoZYSi09RJ35Yg5HCMeOJQKs5cpKpon17qSWgmgnleYWXB9deBCLEACsiprTzIsG6KIBuo-u_hxT6OUsPK0bYC7KWlijaBA-_r37BO16byWrz2mdos56uYEztGM-17PV8rz6Gr4AgFmy5w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGA3bFPRJZRPnNYLgi93aXNbUN5mOiXMMmTLwoeTyRffgNnbx95u0ZSII4lPTEBo4bfpdknM-hC4UA_dmGQkiaXjAdEwDaagKBGgvFydDYkxWbCLu98VolAxK6GrNhQGA7PAZNHwz28s3U73yqbJm4vkMlJXRBmeMRDlba51R8b4_C2mh3xMx3qTONyGCN9w1CX2J6rLUHz_KqGRWpLPzv_l3Ue2bjocHa0Ozh0owqaLXfufFAMyu8Y2RM__TwrlsKC6WP-44k-Vhx-13F_7jW_C1ff0M2Cdf3T3M8BNkyqk6SxLiQmz1rYaeO3fDdjcoKiUE0q3JZdAiigpJteVStxIb8di2rGLGksh1CBubCGIlw1aiIwLOJGuhExeeKq2JodTQfVSZTCdwgHBoWRSDMVwawRQxzqFUIibKCqm4AVtH5w7E1IcAizRnNfO0ADotgK6jyz_HpGo-9k-repjTWS6tkRYIH_7efYa2usPHXtq77z8coW3nuyT5qa1jVFnOV3CCNvXncryYn2Zfxhf9DrYu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+International+Symposium+on+Quality+of+Service&rft.atitle=NFVdeep&rft.au=Xiao%2C+Yikai&rft.au=Zhang%2C+Qixia&rft.au=Liu%2C+Fangming&rft.au=Wang%2C+Jia&rft.series=ACM+Other+Conferences&rft.date=2019-06-24&rft.pub=ACM&rft.isbn=9781450367783&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1145%2F3326285.3329056 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450367783/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450367783/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450367783/sc.gif&client=summon&freeimage=true |

