Scalable reduction collectives with data partitioning-based multi-leader design
Existing designs for MPI_Allreduce do not take advantage of the vast parallelism available in modern multi-/many-core processors like Intel Xeon/Xeon Phis or the increases in communication throughput and recent advances in high-end features seen with modern interconnects like InfiniBand and Omni-Pat...
Saved in:
| Published in: | International Conference for High Performance Computing, Networking, Storage and Analysis (Online) pp. 1 - 11 |
|---|---|
| Main Authors: | , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
New York, NY, USA
ACM
12.11.2017
|
| Series: | ACM Conferences |
| Subjects: | |
| ISBN: | 9781450351140, 145035114X |
| ISSN: | 2167-4337 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Existing designs for MPI_Allreduce do not take advantage of the vast parallelism available in modern multi-/many-core processors like Intel Xeon/Xeon Phis or the increases in communication throughput and recent advances in high-end features seen with modern interconnects like InfiniBand and Omni-Path. In this paper, we propose a high-performance and scalable Data Partitioning-based Multi-Leader (DPML) solution for MPI_Allreduce that can take advantage of the parallelism offered by multi-/many-core architectures in conjunction with the high throughput and high-end features offered by InfiniBand and Omni-Path to significantly enhance the performance of MPI_Allreduce on modern HPC systems. We also model DPML-based designs to analyze the communication costs theoretically. Microbenchmark level evaluations show that the proposed DPML-based designs are able to deliver up to 3.5 times performance improvement for MPI_Allreduce for multiple HPC systems at scale. At the application-level, up to 35% and 60% improvement is seen in communication for HPCG and miniAMR respectively. |
|---|---|
| ISBN: | 9781450351140 145035114X |
| ISSN: | 2167-4337 |
| DOI: | 10.1145/3126908.3126954 |

