LLMs Still Can't Avoid Instanceof: An Investigation Into GPT-3.5, GPT-4 and Bard's Capacity to Handle Object-Oriented Programming Assignments

Large Language Models (LLMs) have emerged as promising tools to assist students while solving programming assignments. However, object-oriented programming (OOP), with its inherent complexity involving the identification of entities, relationships, and responsibilities, is not yet mastered by these...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE/ACM International Conference on Software Engineering: Software Engineering Education and Training (Online) s. 162 - 169
Hlavní autoři: Cipriano, Bruno Pereira, Alves, Pedro
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: ACM 14.04.2024
Témata:
ISSN:2832-7578
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Large Language Models (LLMs) have emerged as promising tools to assist students while solving programming assignments. However, object-oriented programming (OOP), with its inherent complexity involving the identification of entities, relationships, and responsibilities, is not yet mastered by these tools. Contrary to introductory programming exercises, there exists a research gap with regard to the behavior of LLMs in OOP contexts. In this study, we experimented with three prominent LLMs - GPT-3.5, GPT-4, and Bard - to solve real-world OOP exercises used in educational settings, subsequently validating their solutions using an Automatic Assessment Tool (AAT). The findings revealed that while the models frequently achieved mostly working solutions to the exercises, they often overlooked the best practices of OOP. GPT-4 stood out as the most proficient, followed by GPT-3.5, with Bard trailing last. We advocate for a renewed emphasis on code quality when employing these models and explore the potential of pairing LLMs with AATs in pedagogical settings. In conclusion, while GPT-4 show-cases promise, the deployment of these models in OOP education still mandates supervision.
ISSN:2832-7578
DOI:10.1145/3639474.3640052