Electromagnetic wave propagation based upon spectral-element methodology in dispersive and attenuating media
We build on mathematical equivalences between Maxwell’s wave equations for an electromagnetic medium and elastic seismic wave equations. This allows us to readily model Maxwell’s wave propagation in the spectral-element codes SPECFEM2D and SPECFEM3D, written for acoustic, viscoelastic and poroelasti...
Uloženo v:
| Vydáno v: | Geophysical journal international Ročník 220; číslo 2; s. 951 - 966 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Oxford University Press
01.02.2020
|
| Témata: | |
| ISSN: | 0956-540X, 1365-246X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We build on mathematical equivalences between Maxwell’s wave equations for an electromagnetic medium and elastic seismic wave equations. This allows us to readily model Maxwell’s wave propagation in the spectral-element codes SPECFEM2D and SPECFEM3D, written for acoustic, viscoelastic and poroelastic seismic wave propagation, providing the ability to handle complex geometries, inherent to finite-element methods and retaining the strength of exponential convergence and accuracy due to the use of high-degree polynomials to interpolate field functions on the elements, characteristic to spectral-element methods (SEMs). Attenuation and dispersion processes related to the frequency dependence of dielectric permittivity and conductivity are also included using a Zener model, similar to shear attenuation in viscoelastic media or viscous diffusion in poroelastic media, and a Kelvin–Voigt model, respectively. Ability to account for anisotropic media is also discussed. Here, we limit ourselves to certain dielectric permittivity tensor geometries, in order to conserve a diagonal mass matrix after discretization of the system of equations. Doing so, simulation of Maxwell’s wave equations in the radar frequency range based on SEM can be solved using explicit time integration schemes well suited for parallel computation. We validate our formulation with analytical solutions. In 2-D, our implementation allows for the modelling of both a transverse magnetic (TM) mode, suitable for surface based reflection ground penetration radar type of applications, and a transverse electric (TE) mode more suitable for crosshole and vertical radar profiling setups. Two 2-D examples are designed to demonstrated the use of the TM and TE modes. A 3-D example is also presented, which allows for the full TEM solution, different antenna orientations, and out-of-plane variations in material properties. |
|---|---|
| AbstractList | We build on mathematical equivalences between Maxwell’s wave equations for an electromagnetic medium and elastic seismic wave equations. This allows us to readily model Maxwell’s wave propagation in the spectral-element codes SPECFEM2D and SPECFEM3D, written for acoustic, viscoelastic and poroelastic seismic wave propagation, providing the ability to handle complex geometries, inherent to finite element methods, and retaining the strength of exponential convergence and accuracy due to the use of high-degree polynomials to interpolate field functions on the elements, characteristic to spectral-element methods. Attenuation and dispersion processes related to the frequency dependence of dielectric permittivity and conductivity are also included using a Zener model, similar to shear attenuation in viscoelastic media or viscous diffusion in poroelastic media, and a Kelvin-Voigt model, respectively. Ability to account for anisotropic media is also discussed. Here, we limit ourselves to certain dielectric permittivity tensor geometries, in order to conserve a diagonal mass matrix after discretization of the system of equations. Doing so, simulation of Maxwell’s wave equations in the radar frequency range based on spectral-element method can be solved using explicit time integration schemes well suited for parallel computation. We validate our formulation with analytical solutions. In 2D, our implementation allows for the modelling of both a transverse magnetic (TM) mode, suitable for surface based reflection ground penetration radar type of applications, and a transverse electric (TE) mode more suitable for crosshole and vertical radar profiling setups. Two 2D examples are designed to demonstrated the use of the TM and TE modes. In conclusion, a 3D example is also presented, which allows for the full TEM solution, different antenna orientations, and out-of-plane variations in material properties. We build on mathematical equivalences between Maxwell’s wave equations for an electromagnetic medium and elastic seismic wave equations. This allows us to readily model Maxwell’s wave propagation in the spectral-element codes SPECFEM2D and SPECFEM3D, written for acoustic, viscoelastic and poroelastic seismic wave propagation, providing the ability to handle complex geometries, inherent to finite-element methods and retaining the strength of exponential convergence and accuracy due to the use of high-degree polynomials to interpolate field functions on the elements, characteristic to spectral-element methods (SEMs). Attenuation and dispersion processes related to the frequency dependence of dielectric permittivity and conductivity are also included using a Zener model, similar to shear attenuation in viscoelastic media or viscous diffusion in poroelastic media, and a Kelvin–Voigt model, respectively. Ability to account for anisotropic media is also discussed. Here, we limit ourselves to certain dielectric permittivity tensor geometries, in order to conserve a diagonal mass matrix after discretization of the system of equations. Doing so, simulation of Maxwell’s wave equations in the radar frequency range based on SEM can be solved using explicit time integration schemes well suited for parallel computation. We validate our formulation with analytical solutions. In 2-D, our implementation allows for the modelling of both a transverse magnetic (TM) mode, suitable for surface based reflection ground penetration radar type of applications, and a transverse electric (TE) mode more suitable for crosshole and vertical radar profiling setups. Two 2-D examples are designed to demonstrated the use of the TM and TE modes. A 3-D example is also presented, which allows for the full TEM solution, different antenna orientations, and out-of-plane variations in material properties. |
| Author | Morency, Christina |
| Author_xml | – sequence: 1 givenname: Christina surname: Morency fullname: Morency, Christina organization: Lawrence Livermore National Laboratory, Atmospheric, Earth and Energy Division, Livermore, CA 94551, USA |
| BackLink | https://www.osti.gov/servlets/purl/1580324$$D View this record in Osti.gov |
| BookMark | eNptkM9LwzAUgINMcJte_AuCR6EuaZI2O8qYP2DgRWG3kqSvXUablCYq8683c57E03uH7308vhmaOO8AoWtK7ihZskW7t4u2_RKUnKEpZYXIcl5sJ2hKlqLIBCfbCzQLYU8I5ZTLKerWHZg4-l61DqI1-FN9AB5GP6hWResd1ipAjd-HtIbhyKougw56cBH3EHe-9p1vD9g6XNtEjMEmg3I1VjGCe08W1yaytuoSnTeqC3D1O-fo7WH9unrKNi-Pz6v7TaYYLWPGJOUF5DUDKEqmtSZaKmWUEBI4I8Ysa6YZLxopeNnk0mgGRsmy4aVhbKnZHN2cvD5EWwVjI5id8c6l9ysqJGE5T9DtCTKjD2GEphpG26vxUFFSHWNWKWZ1iplg8gdO0p8-qYft_jv5BmDKfuk |
| CitedBy_id | crossref_primary_10_1111_1365_2478_70080 crossref_primary_10_1016_j_geoen_2024_212633 crossref_primary_10_1190_geo2022_0293_1 crossref_primary_10_1016_j_jappgeo_2020_104128 crossref_primary_10_1371_journal_pone_0289184 |
| Cites_doi | 10.1111/j.1365-246X.2009.04332.x 10.1142/S0218396X95000136 10.1111/j.1365-246X.2006.03261.x 10.1016/j.scitotenv.2017.03.210 10.1007/978-3-642-84108-8 10.1111/j.1365-246X.2004.02453.x 10.1006/jcph.1994.1159 10.1023/A:1010182928643 10.1785/BSSA0670061529 10.1016/S0926-9851(01)00092-1 10.1046/j.1365-246X.2002.01653.x 10.1016/j.cpc.2016.08.020 10.1785/BSSA0880020368 10.1002/mop.21440 10.1109/TAP.1966.1138693 10.1190/1.1443584 10.1109/8.558658 10.1190/1.1444396 10.1190/1.1444758 10.1007/s12583-015-0612-1 10.1111/j.1365-246X.2009.04439.x 10.1190/1.1443701 10.1103/PhysRevB.50.15678 10.1046/j.1365-246x.1999.00967.x 10.1002/jnm.544 10.1111/j.1365-246X.2008.03907.x 10.1016/j.cageo.2005.11.006 10.1190/1.1443677 10.1111/j.1365-246X.1988.tb06706.x 10.1190/1.1444151 10.1111/j.1365-2478.1996.tb00141.x 10.1002/(SICI)1097-0207(19990730)45:9<1139::AID-NME617>3.0.CO;2-T 10.1016/S0926-9851(98)00019-6 10.1190/1.1444085 10.1029/157GM13 10.1007/BF01772605 10.1016/j.ndteint.2017.04.002 10.1016/j.ijggc.2015.03.030 10.1016/j.jappgeo.2016.07.027 10.1111/j.1365-246X.2012.05459.x 10.1016/0165-2125(94)00047-9 10.3997/1873-0604.2008024 10.1111/j.1365-246X.1976.tb01261.x |
| ContentType | Journal Article |
| CorporateAuthor | Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) |
| CorporateAuthor_xml | – name: Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) |
| DBID | AAYXX CITATION OIOZB OTOTI |
| DOI | 10.1093/gji/ggz510 |
| DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1365-246X |
| EndPage | 966 |
| ExternalDocumentID | 1580324 10_1093_gji_ggz510 |
| GroupedDBID | -~X .2P .I3 0R~ 1OC 29H 4.4 48X 5GY 5VS AAIJN AAJKP AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAYXX ABCQN ABEJV ABEUO ABGNP ABIXL ABNKS ABPTD ABQLI ABVLG ABXVV ABZBJ ACGFS ACUFI ACUXJ ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRTK ADVEK ADYVW ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFEBI AFFZL AFIYH AFOFC AGINJ AGSYK AHGBF AHXPO AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT AXUDD AZVOD BAYMD BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CDBKE CITATION CS3 DAKXR DCZOG DILTD D~K EBS EE~ F9B FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HW0 HZI HZ~ IHE J21 JAVBF JXSIZ K48 KBUDW KOP KQ8 KSI KSN LH4 N9A NGC NMDNZ NOMLY O9- OCL ODMLO OIG OJQWA O~Y P2P P4D PAFKI PEELM Q1. Q5Y ROX ROZ RUSNO RW1 RXO TJP TOX YAYTL YKOAZ YXANX ~02 AABJS AABMN AAESY AAIYJ AAPBV ABPTK ABSAR ADEIU ADIPN ADORX ADQLU ADRIX AFXEN AIKOY ARQIP AUCZF AZQFJ BCRHZ BYORX CASEJ DPORF DPPUQ M49 NU- OIOZB OTOTI OWPYF RHF UMP WRC |
| ID | FETCH-LOGICAL-a317t-38146e2d3ee673bbb0b8aaca558e430cc9d3b346f8547f28cb3eca87f47c339b3 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506848400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0956-540X |
| IngestDate | Thu May 18 22:33:34 EDT 2023 Sat Nov 29 05:20:44 EST 2025 Tue Nov 18 22:21:57 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a317t-38146e2d3ee673bbb0b8aaca558e430cc9d3b346f8547f28cb3eca87f47c339b3 |
| Notes | AC52-07NA27344 LLNL-JRNL-755165 USDOE National Nuclear Security Administration (NNSA) |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1580324 |
| PageCount | 16 |
| ParticipantIDs | osti_scitechconnect_1580324 crossref_primary_10_1093_gji_ggz510 crossref_citationtrail_10_1093_gji_ggz510 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Geophysical journal international |
| PublicationYear | 2020 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Irving (2020111220060385700_bib19) 2006; 32 Turner (2020111220060385700_bib44) 1994; 59 Tromp (2020111220060385700_bib42) 2005; 160 Tarantola (2020111220060385700_bib41) 1988; 128 Goodman (2020111220060385700_bib15) 1994; 59 Hughes (2020111220060385700_bib17) 1987 Carcione (2020111220060385700_bib9) 1996; 44 Carcione (2020111220060385700_bib10) 1988; 95 Carcione (2020111220060385700_bib4) 1993; 12 Komatitsch (2020111220060385700_bib26) 2005 Pride (2020111220060385700_bib36) 1994; 50 Komatitsch (2020111220060385700_bib22) 2002; 149 Carcione (2020111220060385700_bib5) 1996; 61 Warren (2020111220060385700_bib46) 2016; 209 Zarei (2020111220060385700_bib49) 2016; 133 Komatitsch (2020111220060385700_bib20) 1997 Komatitsch (2020111220060385700_bib23) 1998; 88 Berenger (2020111220060385700_bib1) 1994; 114 Liu (2020111220060385700_bib31) 2004; 17 Wang (2020111220060385700_bib45) 2002; 49 Komatitsch (2020111220060385700_bib25) 2000; 65 Yee (2020111220060385700_bib48) 1966; 14 Ikelle (2020111220060385700_bib18) 2012; 189 Chen (2020111220060385700_bib11) 1998; 40 Lai (2020111220060385700_bib27) 2018; 96 Lee (2020111220060385700_bib29) 1997; 45 Hasted (2020111220060385700_bib16) 1973 Paz (2020111220060385700_bib35) 2017; 595 Lassen (2020111220060385700_bib28) 2015; 37 Clayton (2020111220060385700_bib12) 1977; 67 Sieminski (2020111220060385700_bib40) 2007; 168 Canuto (2020111220060385700_bib3) 1988 Carcione (2020111220060385700_bib6) 2007 Robertsson (2020111220060385700_bib38) 1994; 59 Liu (2020111220060385700_bib32) 2006; 48 Komatitsch (2020111220060385700_bib21) 1999; 139 Carcione (2020111220060385700_bib8) 1995; 3 Bergmann (2020111220060385700_bib2) 1998; 63 Giannopoulos (2020111220060385700_bib14) 2008; 6 Revil (2020111220060385700_bib37) 2010; 180 Morency (2020111220060385700_bib33) 2008; 175 Carcione (2020111220060385700_bib7) 1995; 21 Dahlen (2020111220060385700_bib13) 1998 Morency (2020111220060385700_bib34) 2009; 179 Xu (2020111220060385700_bib47) 1997; 62 Tsoflias (2020111220060385700_bib43) 2015; 26 Komatitsch (2020111220060385700_bib24) 1999; 45 Liu (2020111220060385700_bib30) 1976; 47 Sato (2020111220060385700_bib39) 2000; 1 Zener (2020111220060385700_bib50) 1948 |
| References_xml | – volume: 179 start-page: 1148 year: 2009 ident: 2020111220060385700_bib34 article-title: Finite-frequency kernels for wave propagation in porous media based upon adjoint methods publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2009.04332.x – volume-title: The Finite-Element Method, Linear Static and Dynamic Finite Element Analysis year: 1987 ident: 2020111220060385700_bib17 – volume: 3 start-page: 261 year: 1995 ident: 2020111220060385700_bib8 article-title: Some aspects of the physics and numerical modeling of Biot compressional waves publication-title: J. Comp. Acoust. doi: 10.1142/S0218396X95000136 – volume: 168 start-page: 1153 year: 2007 ident: 2020111220060385700_bib40 article-title: Finite-frequency sensitivity of surface waves to anisotropy based upon adjoint methods publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2006.03261.x – volume: 12 start-page: 53 year: 1993 ident: 2020111220060385700_bib4 article-title: A 3-D time-domain wave equation for viscoacoustic saturated porous media publication-title: Eur. J. Mech., A – volume: 595 start-page: 868 year: 2017 ident: 2020111220060385700_bib35 article-title: Current uses of ground penetrating radar in groundwater-dependent ecosystems research publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.03.210 – volume-title: Spectral Methods in Fluid Dynamics year: 1988 ident: 2020111220060385700_bib3 doi: 10.1007/978-3-642-84108-8 – volume-title: PhD thesis year: 1997 ident: 2020111220060385700_bib20 article-title: Méthodes spectrales et éléments spectraux pour l’équation de l’élastodynamique 2D et 3D en milieu hétérogène (Spectral and spectral-element methods for the 2D and 3D elastodynamics equations in heterogeneous media) – volume: 160 start-page: 195 year: 2005 ident: 2020111220060385700_bib42 article-title: Seismic tomography, adjoint methods, time reversal, and banana-doughnut kernels publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2004.02453.x – volume: 114 start-page: 185 year: 1994 ident: 2020111220060385700_bib1 article-title: A perfectly matched layer for absorption of electromagnetic waves publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1159 – volume: 1 start-page: 161 year: 2000 ident: 2020111220060385700_bib39 article-title: Polarimetric borehole radar system fracture measurement publication-title: Subsurf. Sens. Technol. Appl. doi: 10.1023/A:1010182928643 – volume: 67 start-page: 1529 year: 1977 ident: 2020111220060385700_bib12 article-title: Absorbing boundary conditions for acoustic and elastic wave equations publication-title: Bull. seism. Soc. Am. doi: 10.1785/BSSA0670061529 – volume: 49 start-page: 111 year: 2002 ident: 2020111220060385700_bib45 article-title: Finite-difference modeling of borehole ground penetrating radar data publication-title: J. Appl. Geophys. doi: 10.1016/S0926-9851(01)00092-1 – volume: 149 start-page: 390 year: 2002 ident: 2020111220060385700_bib22 article-title: Spectral-element simulations of global seismic wave propagation-I. Validation publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246X.2002.01653.x – volume: 209 start-page: 163 year: 2016 ident: 2020111220060385700_bib46 article-title: gprMax: open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar publication-title: Comp. Phys. Commun. doi: 10.1016/j.cpc.2016.08.020 – volume: 88 start-page: 368 issue: 2 year: 1998 ident: 2020111220060385700_bib23 article-title: The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures publication-title: Bull. seism. Soc. Am. doi: 10.1785/BSSA0880020368 – volume: 48 start-page: 673 year: 2006 ident: 2020111220060385700_bib32 article-title: A spectral-element time-domain solution of Maxwell’s equations publication-title: Microwave Opt. Technol. Lett. doi: 10.1002/mop.21440 – volume: 14 start-page: 302 year: 1966 ident: 2020111220060385700_bib48 article-title: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media publication-title: IEEE Trans. Ant. Propag. doi: 10.1109/TAP.1966.1138693 – volume: 59 start-page: 224 year: 1994 ident: 2020111220060385700_bib15 article-title: Ground-penetrating radar simulation in engineering and archaelogy publication-title: Geophysics doi: 10.1190/1.1443584 – volume: 45 start-page: 430 year: 1997 ident: 2020111220060385700_bib29 article-title: Time-domain finite-element methods publication-title: IEEE Trans. Antennas Propagat. doi: 10.1109/8.558658 – volume: 63 start-page: 856 year: 1998 ident: 2020111220060385700_bib2 article-title: Finite-difference modeling of electromagnetic wave propagation in dispersive and attenuating media publication-title: Geophysics doi: 10.1190/1.1444396 – volume: 65 start-page: 623 issue: 2 year: 2000 ident: 2020111220060385700_bib25 article-title: Wave propagation near a fluid-solid interface: a spectral element approach publication-title: Geophysics doi: 10.1190/1.1444758 – volume: 26 start-page: 776 year: 2015 ident: 2020111220060385700_bib43 article-title: Cross-polarized GPR imaging of fracture flow channeling publication-title: J. Earth Sci. doi: 10.1007/s12583-015-0612-1 – volume: 180 start-page: 781 year: 2010 ident: 2020111220060385700_bib37 article-title: Seismoelectric response of heavy oil reservoirs: theory and numerical modelling publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2009.04439.x – volume: 59 start-page: 1444 year: 1994 ident: 2020111220060385700_bib38 article-title: Viscoelastic finite-difference modeling publication-title: Geophysics doi: 10.1190/1.1443701 – volume-title: Elasticity and Anelasticity of Metals year: 1948 ident: 2020111220060385700_bib50 – volume: 50 start-page: 15 678 year: 1994 ident: 2020111220060385700_bib36 article-title: Governing equations for the coupled electromagnetics and acoustics of porous media publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.15678 – volume: 139 start-page: 806 year: 1999 ident: 2020111220060385700_bib21 article-title: Introduction to the spectral element method for three-dimensional seismic wave propagation publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246x.1999.00967.x – volume: 17 start-page: 299 year: 2004 ident: 2020111220060385700_bib31 article-title: Review of PSTD methods for transient electromagnetics publication-title: Intl J. Numer. Model. doi: 10.1002/jnm.544 – volume: 175 start-page: 301 year: 2008 ident: 2020111220060385700_bib33 article-title: Spectral-element simulations of wave propagation in porous media publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2008.03907.x – volume: 32 start-page: 1247 year: 2006 ident: 2020111220060385700_bib19 article-title: Numerical modeling of ground-penetrating radar in 2-D using MATLAB publication-title: Comp. Geosci. doi: 10.1016/j.cageo.2005.11.006 – volume: 59 start-page: 1192 year: 1994 ident: 2020111220060385700_bib44 article-title: Constant Q attenuation of subsurface radar pulses publication-title: Geophysics doi: 10.1190/1.1443677 – volume: 95 start-page: 597 year: 1988 ident: 2020111220060385700_bib10 article-title: Wave propagation simulation in a linear viscoelastic medium publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1988.tb06706.x – volume: 62 start-page: 403 year: 1997 ident: 2020111220060385700_bib47 article-title: GPR attenuation and its numerical simulation in 2.5-dimensions publication-title: Geophysics doi: 10.1190/1.1444151 – volume: 44 start-page: 99 year: 1996 ident: 2020111220060385700_bib9 article-title: Full frequency-range transient solution for compressional waves in a fluid-saturated viscoacoustic porous medium publication-title: Geophys. Prosp. doi: 10.1111/j.1365-2478.1996.tb00141.x – volume-title: Aqueous Dielectrics year: 1973 ident: 2020111220060385700_bib16 – volume: 45 start-page: 1139 year: 1999 ident: 2020111220060385700_bib24 article-title: The spectral element method for elastic wave equations: application to 2D and 3D seismic problems publication-title: Int. J. Numer. Meth. Engng. doi: 10.1002/(SICI)1097-0207(19990730)45:9<1139::AID-NME617>3.0.CO;2-T – volume: 40 start-page: 139 year: 1998 ident: 2020111220060385700_bib11 article-title: Finite-difference time-domain simulation of GPR data publication-title: J. appl. Geophys. doi: 10.1016/S0926-9851(98)00019-6 – volume: 61 start-page: 1664 year: 1996 ident: 2020111220060385700_bib5 article-title: Ground-penetrating radar: wave theory and numerical simulation in lossy anisotropic media publication-title: Geophysics doi: 10.1190/1.1444085 – volume-title: The Seismic Earth year: 2005 ident: 2020111220060385700_bib26 article-title: The spectral-element method in seismology doi: 10.1029/157GM13 – volume: 128 start-page: 365 year: 1988 ident: 2020111220060385700_bib41 article-title: Theoretical background for the inversion of seismic waveforms, including elasticity and attenuation publication-title: Pure appl. Geophys. doi: 10.1007/BF01772605 – volume: 96 start-page: 58 year: 2018 ident: 2020111220060385700_bib27 article-title: A review of ground penetrating radar application in civil engineering: a 30-year journey from locating and testing to imaging and diagnosis publication-title: NDT E Int. doi: 10.1016/j.ndteint.2017.04.002 – volume: 37 start-page: 287 year: 2015 ident: 2020111220060385700_bib28 article-title: Monitoring CO2 gas-phase migration in a shallow sand aquifer using cross-borehole ground penetrating radar publication-title: Int. J. Greenhouse Gas Contl doi: 10.1016/j.ijggc.2015.03.030 – volume: 133 start-page: 92 year: 2016 ident: 2020111220060385700_bib49 article-title: 2d spectral element modeling of GPR wave proagation in inhomogeneous media publication-title: J. appl. Geophys. doi: 10.1016/j.jappgeo.2016.07.027 – volume: 189 start-page: 1771 year: 2012 ident: 2020111220060385700_bib18 article-title: On elastic-electromagnetic mathematical equivalences publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2012.05459.x – volume: 21 start-page: 149 year: 1995 ident: 2020111220060385700_bib7 article-title: On the acoustic-electromagnetic analogy publication-title: Wave Motion doi: 10.1016/0165-2125(94)00047-9 – volume-title: Handbook of Geophysical Exploration: Wave Fields in Real Media: Wave Propagation In Anisotropic, Anelastic, Porous and Electromagnetic Media year: 2007 ident: 2020111220060385700_bib6 – volume-title: Theoretical Global Seismology year: 1998 ident: 2020111220060385700_bib13 – volume: 6 start-page: 357 year: 2008 ident: 2020111220060385700_bib14 article-title: Numerical modeling of ground penetrating radar response from rough subsurface interfaces publication-title: Near Surf. Geophys. doi: 10.3997/1873-0604.2008024 – volume: 47 start-page: 41 year: 1976 ident: 2020111220060385700_bib30 article-title: Velocity dispersion due to anelasticity: implications for seismology and mantle composition publication-title: Geophys. J. R. astr. Soc. doi: 10.1111/j.1365-246X.1976.tb01261.x |
| SSID | ssj0014148 |
| Score | 2.3333545 |
| Snippet | We build on mathematical equivalences between Maxwell’s wave equations for an electromagnetic medium and elastic seismic wave equations. This allows us to... |
| SourceID | osti crossref |
| SourceType | Open Access Repository Enrichment Source Index Database |
| StartPage | 951 |
| SubjectTerms | electromagnetic theory GEOSCIENCES ground penetrating radar MATHEMATICS AND COMPUTING numerical modelling wave propagation |
| Title | Electromagnetic wave propagation based upon spectral-element methodology in dispersive and attenuating media |
| URI | https://www.osti.gov/servlets/purl/1580324 |
| Volume | 220 |
| WOSCitedRecordID | wos000506848400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1365-246X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014148 issn: 0956-540X databaseCode: TOX dateStart: 19880101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3Pa9swFMdFl27QS9lP-mtDsF1GMHUs-dexlLS9rOshY74ZSZFNRqqYxC1t__q-J9mOU7qxHXYxxjHC6KM8PUnvfR8hX6SAiUNMhcc0mEBUH_FEoQCIBmdfq5QHsSs2EV9eJlmWXjU1W1e2nEBsTHJ3l1b_FTU8A9iYOvsPuLtG4QHcA3S4Ana4_hX4sStscy1KgwmKw59YX-hqCYvj0sHGiWs6vKnQUmCe5VLMvbGLIh9-swWlnS7TzKA2Z4UbarfukOGkBg8btcFNaU94RN-1PdeLqoXe6lHM-vuNHdsFZhjer6UNmgre7eYDrDT9jUCO3yQ1buwyRhh7kbnpxtlYG1jHo6xvhIPA74224Fnj7oSvyl-IoCwfwiYedlMuexQmPjiJL8h2EIcp2rnJ96w7V-IjW0-t-6xWsDZlx9DusWt1w0UZLKAbei7H5DXZbdYK9MQxfkO2tHlLXtmYXbV6R-ZPSFMkTXukqSVNkTR9Spr2SNOZoWvSFEjTHmlqSb8nP87Gk9MLryme4QlwCWuP4d6uDqZM6yhmUkpfJkIoEYaJ5sxXKp0yyXhUJCGPiyBRkmklkrjgsWIslewDGZiF0XuEMsU1lyOBan6cqQIFfyIldKRT-JczvU--tv2Vq0ZZHguczHMX4cBy6Nvc9e0--dy9Wzk9lWffOsRuz8ELRCljhTFfqs4btgd__PWQ7KxH6hEZ1Msb_ZG8VLf1bLX8ZIfDIylqfME |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electromagnetic+Wave+Propagation+based+upon+Spectral-Element+Methodology+in+Dispersive+and+Attenuating+Media&rft.jtitle=Geophysical+journal+international&rft.au=Morency%2C+Christina&rft.date=2020-02-01&rft.pub=Oxford+University+Press&rft.issn=0956-540X&rft.eissn=1365-246X&rft.volume=220&rft.issue=2&rft_id=info:doi/10.1093%2Fgji%2Fggz510&rft.externalDocID=1580324 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-540X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-540X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-540X&client=summon |