Electromagnetic wave propagation based upon spectral-element methodology in dispersive and attenuating media

We build on mathematical equivalences between Maxwell’s wave equations for an electromagnetic medium and elastic seismic wave equations. This allows us to readily model Maxwell’s wave propagation in the spectral-element codes SPECFEM2D and SPECFEM3D, written for acoustic, viscoelastic and poroelasti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Geophysical journal international Ročník 220; číslo 2; s. 951 - 966
Hlavní autor: Morency, Christina
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Oxford University Press 01.02.2020
Témata:
ISSN:0956-540X, 1365-246X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We build on mathematical equivalences between Maxwell’s wave equations for an electromagnetic medium and elastic seismic wave equations. This allows us to readily model Maxwell’s wave propagation in the spectral-element codes SPECFEM2D and SPECFEM3D, written for acoustic, viscoelastic and poroelastic seismic wave propagation, providing the ability to handle complex geometries, inherent to finite-element methods and retaining the strength of exponential convergence and accuracy due to the use of high-degree polynomials to interpolate field functions on the elements, characteristic to spectral-element methods (SEMs). Attenuation and dispersion processes related to the frequency dependence of dielectric permittivity and conductivity are also included using a Zener model, similar to shear attenuation in viscoelastic media or viscous diffusion in poroelastic media, and a Kelvin–Voigt model, respectively. Ability to account for anisotropic media is also discussed. Here, we limit ourselves to certain dielectric permittivity tensor geometries, in order to conserve a diagonal mass matrix after discretization of the system of equations. Doing so, simulation of Maxwell’s wave equations in the radar frequency range based on SEM can be solved using explicit time integration schemes well suited for parallel computation. We validate our formulation with analytical solutions. In 2-D, our implementation allows for the modelling of both a transverse magnetic (TM) mode, suitable for surface based reflection ground penetration radar type of applications, and a transverse electric (TE) mode more suitable for crosshole and vertical radar profiling setups. Two 2-D examples are designed to demonstrated the use of the TM and TE modes. A 3-D example is also presented, which allows for the full TEM solution, different antenna orientations, and out-of-plane variations in material properties.
AbstractList We build on mathematical equivalences between Maxwell’s wave equations for an electromagnetic medium and elastic seismic wave equations. This allows us to readily model Maxwell’s wave propagation in the spectral-element codes SPECFEM2D and SPECFEM3D, written for acoustic, viscoelastic and poroelastic seismic wave propagation, providing the ability to handle complex geometries, inherent to finite element methods, and retaining the strength of exponential convergence and accuracy due to the use of high-degree polynomials to interpolate field functions on the elements, characteristic to spectral-element methods. Attenuation and dispersion processes related to the frequency dependence of dielectric permittivity and conductivity are also included using a Zener model, similar to shear attenuation in viscoelastic media or viscous diffusion in poroelastic media, and a Kelvin-Voigt model, respectively. Ability to account for anisotropic media is also discussed. Here, we limit ourselves to certain dielectric permittivity tensor geometries, in order to conserve a diagonal mass matrix after discretization of the system of equations. Doing so, simulation of Maxwell’s wave equations in the radar frequency range based on spectral-element method can be solved using explicit time integration schemes well suited for parallel computation. We validate our formulation with analytical solutions. In 2D, our implementation allows for the modelling of both a transverse magnetic (TM) mode, suitable for surface based reflection ground penetration radar type of applications, and a transverse electric (TE) mode more suitable for crosshole and vertical radar profiling setups. Two 2D examples are designed to demonstrated the use of the TM and TE modes. In conclusion, a 3D example is also presented, which allows for the full TEM solution, different antenna orientations, and out-of-plane variations in material properties.
We build on mathematical equivalences between Maxwell’s wave equations for an electromagnetic medium and elastic seismic wave equations. This allows us to readily model Maxwell’s wave propagation in the spectral-element codes SPECFEM2D and SPECFEM3D, written for acoustic, viscoelastic and poroelastic seismic wave propagation, providing the ability to handle complex geometries, inherent to finite-element methods and retaining the strength of exponential convergence and accuracy due to the use of high-degree polynomials to interpolate field functions on the elements, characteristic to spectral-element methods (SEMs). Attenuation and dispersion processes related to the frequency dependence of dielectric permittivity and conductivity are also included using a Zener model, similar to shear attenuation in viscoelastic media or viscous diffusion in poroelastic media, and a Kelvin–Voigt model, respectively. Ability to account for anisotropic media is also discussed. Here, we limit ourselves to certain dielectric permittivity tensor geometries, in order to conserve a diagonal mass matrix after discretization of the system of equations. Doing so, simulation of Maxwell’s wave equations in the radar frequency range based on SEM can be solved using explicit time integration schemes well suited for parallel computation. We validate our formulation with analytical solutions. In 2-D, our implementation allows for the modelling of both a transverse magnetic (TM) mode, suitable for surface based reflection ground penetration radar type of applications, and a transverse electric (TE) mode more suitable for crosshole and vertical radar profiling setups. Two 2-D examples are designed to demonstrated the use of the TM and TE modes. A 3-D example is also presented, which allows for the full TEM solution, different antenna orientations, and out-of-plane variations in material properties.
Author Morency, Christina
Author_xml – sequence: 1
  givenname: Christina
  surname: Morency
  fullname: Morency, Christina
  organization: Lawrence Livermore National Laboratory, Atmospheric, Earth and Energy Division, Livermore, CA 94551, USA
BackLink https://www.osti.gov/servlets/purl/1580324$$D View this record in Osti.gov
BookMark eNptkM9LwzAUgINMcJte_AuCR6EuaZI2O8qYP2DgRWG3kqSvXUablCYq8683c57E03uH7308vhmaOO8AoWtK7ihZskW7t4u2_RKUnKEpZYXIcl5sJ2hKlqLIBCfbCzQLYU8I5ZTLKerWHZg4-l61DqI1-FN9AB5GP6hWResd1ipAjd-HtIbhyKougw56cBH3EHe-9p1vD9g6XNtEjMEmg3I1VjGCe08W1yaytuoSnTeqC3D1O-fo7WH9unrKNi-Pz6v7TaYYLWPGJOUF5DUDKEqmtSZaKmWUEBI4I8Ysa6YZLxopeNnk0mgGRsmy4aVhbKnZHN2cvD5EWwVjI5id8c6l9ysqJGE5T9DtCTKjD2GEphpG26vxUFFSHWNWKWZ1iplg8gdO0p8-qYft_jv5BmDKfuk
CitedBy_id crossref_primary_10_1111_1365_2478_70080
crossref_primary_10_1016_j_geoen_2024_212633
crossref_primary_10_1190_geo2022_0293_1
crossref_primary_10_1016_j_jappgeo_2020_104128
crossref_primary_10_1371_journal_pone_0289184
Cites_doi 10.1111/j.1365-246X.2009.04332.x
10.1142/S0218396X95000136
10.1111/j.1365-246X.2006.03261.x
10.1016/j.scitotenv.2017.03.210
10.1007/978-3-642-84108-8
10.1111/j.1365-246X.2004.02453.x
10.1006/jcph.1994.1159
10.1023/A:1010182928643
10.1785/BSSA0670061529
10.1016/S0926-9851(01)00092-1
10.1046/j.1365-246X.2002.01653.x
10.1016/j.cpc.2016.08.020
10.1785/BSSA0880020368
10.1002/mop.21440
10.1109/TAP.1966.1138693
10.1190/1.1443584
10.1109/8.558658
10.1190/1.1444396
10.1190/1.1444758
10.1007/s12583-015-0612-1
10.1111/j.1365-246X.2009.04439.x
10.1190/1.1443701
10.1103/PhysRevB.50.15678
10.1046/j.1365-246x.1999.00967.x
10.1002/jnm.544
10.1111/j.1365-246X.2008.03907.x
10.1016/j.cageo.2005.11.006
10.1190/1.1443677
10.1111/j.1365-246X.1988.tb06706.x
10.1190/1.1444151
10.1111/j.1365-2478.1996.tb00141.x
10.1002/(SICI)1097-0207(19990730)45:9<1139::AID-NME617>3.0.CO;2-T
10.1016/S0926-9851(98)00019-6
10.1190/1.1444085
10.1029/157GM13
10.1007/BF01772605
10.1016/j.ndteint.2017.04.002
10.1016/j.ijggc.2015.03.030
10.1016/j.jappgeo.2016.07.027
10.1111/j.1365-246X.2012.05459.x
10.1016/0165-2125(94)00047-9
10.3997/1873-0604.2008024
10.1111/j.1365-246X.1976.tb01261.x
ContentType Journal Article
CorporateAuthor Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
CorporateAuthor_xml – name: Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1093/gji/ggz510
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1365-246X
EndPage 966
ExternalDocumentID 1580324
10_1093_gji_ggz510
GroupedDBID -~X
.2P
.I3
0R~
1OC
29H
4.4
48X
5GY
5VS
AAIJN
AAJKP
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAYXX
ABCQN
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPTD
ABQLI
ABVLG
ABXVV
ABZBJ
ACGFS
ACUFI
ACUXJ
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFEBI
AFFZL
AFIYH
AFOFC
AGINJ
AGSYK
AHGBF
AHXPO
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
AXUDD
AZVOD
BAYMD
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CDBKE
CITATION
CS3
DAKXR
DCZOG
DILTD
D~K
EBS
EE~
F9B
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HW0
HZI
HZ~
IHE
J21
JAVBF
JXSIZ
K48
KBUDW
KOP
KQ8
KSI
KSN
LH4
N9A
NGC
NMDNZ
NOMLY
O9-
OCL
ODMLO
OIG
OJQWA
O~Y
P2P
P4D
PAFKI
PEELM
Q1.
Q5Y
ROX
ROZ
RUSNO
RW1
RXO
TJP
TOX
YAYTL
YKOAZ
YXANX
~02
AABJS
AABMN
AAESY
AAIYJ
AAPBV
ABPTK
ABSAR
ADEIU
ADIPN
ADORX
ADQLU
ADRIX
AFXEN
AIKOY
ARQIP
AUCZF
AZQFJ
BCRHZ
BYORX
CASEJ
DPORF
DPPUQ
M49
NU-
OIOZB
OTOTI
OWPYF
RHF
UMP
WRC
ID FETCH-LOGICAL-a317t-38146e2d3ee673bbb0b8aaca558e430cc9d3b346f8547f28cb3eca87f47c339b3
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506848400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0956-540X
IngestDate Thu May 18 22:33:34 EDT 2023
Sat Nov 29 05:20:44 EST 2025
Tue Nov 18 22:21:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a317t-38146e2d3ee673bbb0b8aaca558e430cc9d3b346f8547f28cb3eca87f47c339b3
Notes AC52-07NA27344
LLNL-JRNL-755165
USDOE National Nuclear Security Administration (NNSA)
OpenAccessLink https://www.osti.gov/servlets/purl/1580324
PageCount 16
ParticipantIDs osti_scitechconnect_1580324
crossref_primary_10_1093_gji_ggz510
crossref_citationtrail_10_1093_gji_ggz510
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Geophysical journal international
PublicationYear 2020
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Irving (2020111220060385700_bib19) 2006; 32
Turner (2020111220060385700_bib44) 1994; 59
Tromp (2020111220060385700_bib42) 2005; 160
Tarantola (2020111220060385700_bib41) 1988; 128
Goodman (2020111220060385700_bib15) 1994; 59
Hughes (2020111220060385700_bib17) 1987
Carcione (2020111220060385700_bib9) 1996; 44
Carcione (2020111220060385700_bib10) 1988; 95
Carcione (2020111220060385700_bib4) 1993; 12
Komatitsch (2020111220060385700_bib26) 2005
Pride (2020111220060385700_bib36) 1994; 50
Komatitsch (2020111220060385700_bib22) 2002; 149
Carcione (2020111220060385700_bib5) 1996; 61
Warren (2020111220060385700_bib46) 2016; 209
Zarei (2020111220060385700_bib49) 2016; 133
Komatitsch (2020111220060385700_bib20) 1997
Komatitsch (2020111220060385700_bib23) 1998; 88
Berenger (2020111220060385700_bib1) 1994; 114
Liu (2020111220060385700_bib31) 2004; 17
Wang (2020111220060385700_bib45) 2002; 49
Komatitsch (2020111220060385700_bib25) 2000; 65
Yee (2020111220060385700_bib48) 1966; 14
Ikelle (2020111220060385700_bib18) 2012; 189
Chen (2020111220060385700_bib11) 1998; 40
Lai (2020111220060385700_bib27) 2018; 96
Lee (2020111220060385700_bib29) 1997; 45
Hasted (2020111220060385700_bib16) 1973
Paz (2020111220060385700_bib35) 2017; 595
Lassen (2020111220060385700_bib28) 2015; 37
Clayton (2020111220060385700_bib12) 1977; 67
Sieminski (2020111220060385700_bib40) 2007; 168
Canuto (2020111220060385700_bib3) 1988
Carcione (2020111220060385700_bib6) 2007
Robertsson (2020111220060385700_bib38) 1994; 59
Liu (2020111220060385700_bib32) 2006; 48
Komatitsch (2020111220060385700_bib21) 1999; 139
Carcione (2020111220060385700_bib8) 1995; 3
Bergmann (2020111220060385700_bib2) 1998; 63
Giannopoulos (2020111220060385700_bib14) 2008; 6
Revil (2020111220060385700_bib37) 2010; 180
Morency (2020111220060385700_bib33) 2008; 175
Carcione (2020111220060385700_bib7) 1995; 21
Dahlen (2020111220060385700_bib13) 1998
Morency (2020111220060385700_bib34) 2009; 179
Xu (2020111220060385700_bib47) 1997; 62
Tsoflias (2020111220060385700_bib43) 2015; 26
Komatitsch (2020111220060385700_bib24) 1999; 45
Liu (2020111220060385700_bib30) 1976; 47
Sato (2020111220060385700_bib39) 2000; 1
Zener (2020111220060385700_bib50) 1948
References_xml – volume: 179
  start-page: 1148
  year: 2009
  ident: 2020111220060385700_bib34
  article-title: Finite-frequency kernels for wave propagation in porous media based upon adjoint methods
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2009.04332.x
– volume-title: The Finite-Element Method, Linear Static and Dynamic Finite Element Analysis
  year: 1987
  ident: 2020111220060385700_bib17
– volume: 3
  start-page: 261
  year: 1995
  ident: 2020111220060385700_bib8
  article-title: Some aspects of the physics and numerical modeling of Biot compressional waves
  publication-title: J. Comp. Acoust.
  doi: 10.1142/S0218396X95000136
– volume: 168
  start-page: 1153
  year: 2007
  ident: 2020111220060385700_bib40
  article-title: Finite-frequency sensitivity of surface waves to anisotropy based upon adjoint methods
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2006.03261.x
– volume: 12
  start-page: 53
  year: 1993
  ident: 2020111220060385700_bib4
  article-title: A 3-D time-domain wave equation for viscoacoustic saturated porous media
  publication-title: Eur. J. Mech., A
– volume: 595
  start-page: 868
  year: 2017
  ident: 2020111220060385700_bib35
  article-title: Current uses of ground penetrating radar in groundwater-dependent ecosystems research
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.03.210
– volume-title: Spectral Methods in Fluid Dynamics
  year: 1988
  ident: 2020111220060385700_bib3
  doi: 10.1007/978-3-642-84108-8
– volume-title: PhD thesis
  year: 1997
  ident: 2020111220060385700_bib20
  article-title: Méthodes spectrales et éléments spectraux pour l’équation de l’élastodynamique 2D et 3D en milieu hétérogène (Spectral and spectral-element methods for the 2D and 3D elastodynamics equations in heterogeneous media)
– volume: 160
  start-page: 195
  year: 2005
  ident: 2020111220060385700_bib42
  article-title: Seismic tomography, adjoint methods, time reversal, and banana-doughnut kernels
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2004.02453.x
– volume: 114
  start-page: 185
  year: 1994
  ident: 2020111220060385700_bib1
  article-title: A perfectly matched layer for absorption of electromagnetic waves
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1159
– volume: 1
  start-page: 161
  year: 2000
  ident: 2020111220060385700_bib39
  article-title: Polarimetric borehole radar system fracture measurement
  publication-title: Subsurf. Sens. Technol. Appl.
  doi: 10.1023/A:1010182928643
– volume: 67
  start-page: 1529
  year: 1977
  ident: 2020111220060385700_bib12
  article-title: Absorbing boundary conditions for acoustic and elastic wave equations
  publication-title: Bull. seism. Soc. Am.
  doi: 10.1785/BSSA0670061529
– volume: 49
  start-page: 111
  year: 2002
  ident: 2020111220060385700_bib45
  article-title: Finite-difference modeling of borehole ground penetrating radar data
  publication-title: J. Appl. Geophys.
  doi: 10.1016/S0926-9851(01)00092-1
– volume: 149
  start-page: 390
  year: 2002
  ident: 2020111220060385700_bib22
  article-title: Spectral-element simulations of global seismic wave propagation-I. Validation
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246X.2002.01653.x
– volume: 209
  start-page: 163
  year: 2016
  ident: 2020111220060385700_bib46
  article-title: gprMax: open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar
  publication-title: Comp. Phys. Commun.
  doi: 10.1016/j.cpc.2016.08.020
– volume: 88
  start-page: 368
  issue: 2
  year: 1998
  ident: 2020111220060385700_bib23
  article-title: The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures
  publication-title: Bull. seism. Soc. Am.
  doi: 10.1785/BSSA0880020368
– volume: 48
  start-page: 673
  year: 2006
  ident: 2020111220060385700_bib32
  article-title: A spectral-element time-domain solution of Maxwell’s equations
  publication-title: Microwave Opt. Technol. Lett.
  doi: 10.1002/mop.21440
– volume: 14
  start-page: 302
  year: 1966
  ident: 2020111220060385700_bib48
  article-title: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media
  publication-title: IEEE Trans. Ant. Propag.
  doi: 10.1109/TAP.1966.1138693
– volume: 59
  start-page: 224
  year: 1994
  ident: 2020111220060385700_bib15
  article-title: Ground-penetrating radar simulation in engineering and archaelogy
  publication-title: Geophysics
  doi: 10.1190/1.1443584
– volume: 45
  start-page: 430
  year: 1997
  ident: 2020111220060385700_bib29
  article-title: Time-domain finite-element methods
  publication-title: IEEE Trans. Antennas Propagat.
  doi: 10.1109/8.558658
– volume: 63
  start-page: 856
  year: 1998
  ident: 2020111220060385700_bib2
  article-title: Finite-difference modeling of electromagnetic wave propagation in dispersive and attenuating media
  publication-title: Geophysics
  doi: 10.1190/1.1444396
– volume: 65
  start-page: 623
  issue: 2
  year: 2000
  ident: 2020111220060385700_bib25
  article-title: Wave propagation near a fluid-solid interface: a spectral element approach
  publication-title: Geophysics
  doi: 10.1190/1.1444758
– volume: 26
  start-page: 776
  year: 2015
  ident: 2020111220060385700_bib43
  article-title: Cross-polarized GPR imaging of fracture flow channeling
  publication-title: J. Earth Sci.
  doi: 10.1007/s12583-015-0612-1
– volume: 180
  start-page: 781
  year: 2010
  ident: 2020111220060385700_bib37
  article-title: Seismoelectric response of heavy oil reservoirs: theory and numerical modelling
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2009.04439.x
– volume: 59
  start-page: 1444
  year: 1994
  ident: 2020111220060385700_bib38
  article-title: Viscoelastic finite-difference modeling
  publication-title: Geophysics
  doi: 10.1190/1.1443701
– volume-title: Elasticity and Anelasticity of Metals
  year: 1948
  ident: 2020111220060385700_bib50
– volume: 50
  start-page: 15 678
  year: 1994
  ident: 2020111220060385700_bib36
  article-title: Governing equations for the coupled electromagnetics and acoustics of porous media
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.15678
– volume: 139
  start-page: 806
  year: 1999
  ident: 2020111220060385700_bib21
  article-title: Introduction to the spectral element method for three-dimensional seismic wave propagation
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246x.1999.00967.x
– volume: 17
  start-page: 299
  year: 2004
  ident: 2020111220060385700_bib31
  article-title: Review of PSTD methods for transient electromagnetics
  publication-title: Intl J. Numer. Model.
  doi: 10.1002/jnm.544
– volume: 175
  start-page: 301
  year: 2008
  ident: 2020111220060385700_bib33
  article-title: Spectral-element simulations of wave propagation in porous media
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2008.03907.x
– volume: 32
  start-page: 1247
  year: 2006
  ident: 2020111220060385700_bib19
  article-title: Numerical modeling of ground-penetrating radar in 2-D using MATLAB
  publication-title: Comp. Geosci.
  doi: 10.1016/j.cageo.2005.11.006
– volume: 59
  start-page: 1192
  year: 1994
  ident: 2020111220060385700_bib44
  article-title: Constant Q attenuation of subsurface radar pulses
  publication-title: Geophysics
  doi: 10.1190/1.1443677
– volume: 95
  start-page: 597
  year: 1988
  ident: 2020111220060385700_bib10
  article-title: Wave propagation simulation in a linear viscoelastic medium
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1988.tb06706.x
– volume: 62
  start-page: 403
  year: 1997
  ident: 2020111220060385700_bib47
  article-title: GPR attenuation and its numerical simulation in 2.5-dimensions
  publication-title: Geophysics
  doi: 10.1190/1.1444151
– volume: 44
  start-page: 99
  year: 1996
  ident: 2020111220060385700_bib9
  article-title: Full frequency-range transient solution for compressional waves in a fluid-saturated viscoacoustic porous medium
  publication-title: Geophys. Prosp.
  doi: 10.1111/j.1365-2478.1996.tb00141.x
– volume-title: Aqueous Dielectrics
  year: 1973
  ident: 2020111220060385700_bib16
– volume: 45
  start-page: 1139
  year: 1999
  ident: 2020111220060385700_bib24
  article-title: The spectral element method for elastic wave equations: application to 2D and 3D seismic problems
  publication-title: Int. J. Numer. Meth. Engng.
  doi: 10.1002/(SICI)1097-0207(19990730)45:9<1139::AID-NME617>3.0.CO;2-T
– volume: 40
  start-page: 139
  year: 1998
  ident: 2020111220060385700_bib11
  article-title: Finite-difference time-domain simulation of GPR data
  publication-title: J. appl. Geophys.
  doi: 10.1016/S0926-9851(98)00019-6
– volume: 61
  start-page: 1664
  year: 1996
  ident: 2020111220060385700_bib5
  article-title: Ground-penetrating radar: wave theory and numerical simulation in lossy anisotropic media
  publication-title: Geophysics
  doi: 10.1190/1.1444085
– volume-title: The Seismic Earth
  year: 2005
  ident: 2020111220060385700_bib26
  article-title: The spectral-element method in seismology
  doi: 10.1029/157GM13
– volume: 128
  start-page: 365
  year: 1988
  ident: 2020111220060385700_bib41
  article-title: Theoretical background for the inversion of seismic waveforms, including elasticity and attenuation
  publication-title: Pure appl. Geophys.
  doi: 10.1007/BF01772605
– volume: 96
  start-page: 58
  year: 2018
  ident: 2020111220060385700_bib27
  article-title: A review of ground penetrating radar application in civil engineering: a 30-year journey from locating and testing to imaging and diagnosis
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2017.04.002
– volume: 37
  start-page: 287
  year: 2015
  ident: 2020111220060385700_bib28
  article-title: Monitoring CO2 gas-phase migration in a shallow sand aquifer using cross-borehole ground penetrating radar
  publication-title: Int. J. Greenhouse Gas Contl
  doi: 10.1016/j.ijggc.2015.03.030
– volume: 133
  start-page: 92
  year: 2016
  ident: 2020111220060385700_bib49
  article-title: 2d spectral element modeling of GPR wave proagation in inhomogeneous media
  publication-title: J. appl. Geophys.
  doi: 10.1016/j.jappgeo.2016.07.027
– volume: 189
  start-page: 1771
  year: 2012
  ident: 2020111220060385700_bib18
  article-title: On elastic-electromagnetic mathematical equivalences
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2012.05459.x
– volume: 21
  start-page: 149
  year: 1995
  ident: 2020111220060385700_bib7
  article-title: On the acoustic-electromagnetic analogy
  publication-title: Wave Motion
  doi: 10.1016/0165-2125(94)00047-9
– volume-title: Handbook of Geophysical Exploration: Wave Fields in Real Media: Wave Propagation In Anisotropic, Anelastic, Porous and Electromagnetic Media
  year: 2007
  ident: 2020111220060385700_bib6
– volume-title: Theoretical Global Seismology
  year: 1998
  ident: 2020111220060385700_bib13
– volume: 6
  start-page: 357
  year: 2008
  ident: 2020111220060385700_bib14
  article-title: Numerical modeling of ground penetrating radar response from rough subsurface interfaces
  publication-title: Near Surf. Geophys.
  doi: 10.3997/1873-0604.2008024
– volume: 47
  start-page: 41
  year: 1976
  ident: 2020111220060385700_bib30
  article-title: Velocity dispersion due to anelasticity: implications for seismology and mantle composition
  publication-title: Geophys. J. R. astr. Soc.
  doi: 10.1111/j.1365-246X.1976.tb01261.x
SSID ssj0014148
Score 2.3333545
Snippet We build on mathematical equivalences between Maxwell’s wave equations for an electromagnetic medium and elastic seismic wave equations. This allows us to...
SourceID osti
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 951
SubjectTerms electromagnetic theory
GEOSCIENCES
ground penetrating radar
MATHEMATICS AND COMPUTING
numerical modelling
wave propagation
Title Electromagnetic wave propagation based upon spectral-element methodology in dispersive and attenuating media
URI https://www.osti.gov/servlets/purl/1580324
Volume 220
WOSCitedRecordID wos000506848400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1365-246X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014148
  issn: 0956-540X
  databaseCode: TOX
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3Pa9swFMdFl27QS9lP-mtDsF1GMHUs-dexlLS9rOshY74ZSZFNRqqYxC1t__q-J9mOU7qxHXYxxjHC6KM8PUnvfR8hX6SAiUNMhcc0mEBUH_FEoQCIBmdfq5QHsSs2EV9eJlmWXjU1W1e2nEBsTHJ3l1b_FTU8A9iYOvsPuLtG4QHcA3S4Ana4_hX4sStscy1KgwmKw59YX-hqCYvj0sHGiWs6vKnQUmCe5VLMvbGLIh9-swWlnS7TzKA2Z4UbarfukOGkBg8btcFNaU94RN-1PdeLqoXe6lHM-vuNHdsFZhjer6UNmgre7eYDrDT9jUCO3yQ1buwyRhh7kbnpxtlYG1jHo6xvhIPA74224Fnj7oSvyl-IoCwfwiYedlMuexQmPjiJL8h2EIcp2rnJ96w7V-IjW0-t-6xWsDZlx9DusWt1w0UZLKAbei7H5DXZbdYK9MQxfkO2tHlLXtmYXbV6R-ZPSFMkTXukqSVNkTR9Spr2SNOZoWvSFEjTHmlqSb8nP87Gk9MLryme4QlwCWuP4d6uDqZM6yhmUkpfJkIoEYaJ5sxXKp0yyXhUJCGPiyBRkmklkrjgsWIslewDGZiF0XuEMsU1lyOBan6cqQIFfyIldKRT-JczvU--tv2Vq0ZZHguczHMX4cBy6Nvc9e0--dy9Wzk9lWffOsRuz8ELRCljhTFfqs4btgd__PWQ7KxH6hEZ1Msb_ZG8VLf1bLX8ZIfDIylqfME
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electromagnetic+Wave+Propagation+based+upon+Spectral-Element+Methodology+in+Dispersive+and+Attenuating+Media&rft.jtitle=Geophysical+journal+international&rft.au=Morency%2C+Christina&rft.date=2020-02-01&rft.pub=Oxford+University+Press&rft.issn=0956-540X&rft.eissn=1365-246X&rft.volume=220&rft.issue=2&rft_id=info:doi/10.1093%2Fgji%2Fggz510&rft.externalDocID=1580324
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-540X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-540X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-540X&client=summon