Complex analysis : a functional analytic approach
In this textbook, a concise approach to complex analysis of one and several variables is presented.After an introduction of Cauchy's integral theorem general versions of Runge's approximation theorem and Mittag-Leffler's theorem are discussed.The fi rst part ends with an analytic char...
Uloženo v:
| Hlavní autor: | |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | angličtina |
| Vydáno: |
Berlin
De Gruyter
2018
Walter de Gruyter GmbH |
| Vydání: | 1 |
| Edice: | De Gruyter Textbook |
| Témata: | |
| ISBN: | 3110417235, 9783110417234 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Obsah:
- Intro -- Preface -- Contents -- 1. Complex numbers and functions -- 2. Cauchy's Theorem and Cauchy's formula -- 3. Analytic continuation -- 4. Construction and approximation of holomorphic functions -- 5. Harmonic functions -- 6. Several complex variables -- 7. Bergman spaces -- 8. The canonical solution operator to ∂̄ -- 9. Nuclear Fréchet spaces of holomorphic functions -- 10. The ∂̄-complex -- 11. The twisted ∂̄-complex and Schrödinger operators -- Bibliography -- Index
- 2. Cauchy’s Theorem and Cauchy’s formula --
- Contents --
- 9. Nuclear Fréchet spaces of holomorphic functions --
- Preface --
- 5. Harmonic functions --
- 1. Complex numbers and functions --
- 7. Bergman spaces --
- Index
- 6. Several complex variables --
- 10. The ∂̄-complex --
- 3. Analytic continuation --
- Frontmatter --
- 11. The twisted ∂̄-complex and Schrödinger operators --
- 4. Construction and approximation of holomorphic functions --
- Bibliography --
- 8. The canonical solution operator to ∂̄ --

