Analytical solution for distributed torsional low strain integrity test for pipe pile
Low strain integrity tests (LSITs) are the most popular non‐destructive methods for pile testing. However, traditional LSITs have encountered unprecedented challenges as the need for long pile and existing pile testing keeps multiplying. Compared to traditional longitudinal excitations, the torsiona...
Saved in:
| Published in: | International journal for numerical and analytical methods in geomechanics Vol. 46; no. 1; pp. 47 - 67 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Bognor Regis
Wiley Subscription Services, Inc
01.01.2022
|
| Subjects: | |
| ISSN: | 0363-9061, 1096-9853 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Low strain integrity tests (LSITs) are the most popular non‐destructive methods for pile testing. However, traditional LSITs have encountered unprecedented challenges as the need for long pile and existing pile testing keeps multiplying. Compared to traditional longitudinal excitations, the torsional wave is less influenced by the velocity attenuation effect and can be subjected at the pile shaft for existing piles. Distributed torsional LSIT is proposed in this article with the presentation of the corresponding analytical solutions that exhibiting the velocity responses along the pile shaft. The solution is verified with previous simplified theoretical and rigorous finite element method (FEM) answers. At the end, the application of this method is exhibited through the identification of necking and concrete segregation defects on pipe piles, which shows the advantage of this method on long pile testing. |
|---|---|
| AbstractList | Low strain integrity tests (LSITs) are the most popular non‐destructive methods for pile testing. However, traditional LSITs have encountered unprecedented challenges as the need for long pile and existing pile testing keeps multiplying. Compared to traditional longitudinal excitations, the torsional wave is less influenced by the velocity attenuation effect and can be subjected at the pile shaft for existing piles. Distributed torsional LSIT is proposed in this article with the presentation of the corresponding analytical solutions that exhibiting the velocity responses along the pile shaft. The solution is verified with previous simplified theoretical and rigorous finite element method (FEM) answers. At the end, the application of this method is exhibited through the identification of necking and concrete segregation defects on pipe piles, which shows the advantage of this method on long pile testing. |
| Author | Liu, Hao Zhang, Yunpeng El Naggar, M. Hesham Wang, Kuihua Wu, Wenbing Jiang, Guosheng Wen, Minjie |
| Author_xml | – sequence: 1 givenname: Yunpeng surname: Zhang fullname: Zhang, Yunpeng organization: Western University – sequence: 2 givenname: Guosheng surname: Jiang fullname: Jiang, Guosheng organization: China University of Geosciences – sequence: 3 givenname: Wenbing orcidid: 0000-0001-5473-1560 surname: Wu fullname: Wu, Wenbing email: zjuwwb1126@163.com organization: Zhejiang University – sequence: 4 givenname: M. Hesham surname: El Naggar fullname: El Naggar, M. Hesham organization: Western University – sequence: 5 givenname: Hao surname: Liu fullname: Liu, Hao organization: China University of Geosciences – sequence: 6 givenname: Minjie surname: Wen fullname: Wen, Minjie organization: Zhejiang University – sequence: 7 givenname: Kuihua orcidid: 0000-0002-9362-0326 surname: Wang fullname: Wang, Kuihua organization: Zhejiang University |
| BookMark | eNp1kNFLwzAQxoNMcE7BP6Hgiy-dl2Zpm8cxdApDX9xzSNvLyKhNTTJG_3vTzSfRlzu4-33Hfd81mXS2Q0LuKMwpQPbYqd2cZQIuyJSCyFNRcjYhU2A5SwXk9Ipce78HAB63U7JddqodgqlVm3jbHoKxXaKtSxrjgzPVIWCTBOt8nEektcckzpXpEtMF3DkThiSgDydNb3qMpcUbcqlV6_H2p8_I9vnpY_WSbt7Xr6vlJlWM5pByXWcZbSiWJUdVVgVTZVHWBTY8FygWqCrkoDnSRoNClRW55oyJYpFpXleCzcj9-W7v7NchviH39uDio15mOQg6Fhap-ZmqnfXeoZa1CWp0OjppJQU5RidjdHKMLgoefgl6Zz6VG_5C0zN6jLaHfzn5tlyf-G-yAYBn |
| CitedBy_id | crossref_primary_10_1016_j_oceaneng_2023_114457 crossref_primary_10_1007_s11440_022_01647_w crossref_primary_10_1002_eqe_3758 crossref_primary_10_1631_jzus_A2200446 crossref_primary_10_1631_jzus_A2100084 crossref_primary_10_1016_j_oceaneng_2024_117241 crossref_primary_10_1002_nag_3432 crossref_primary_10_1061_JENMDT_EMENG_7668 crossref_primary_10_1016_j_compgeo_2022_105210 crossref_primary_10_1016_j_oceaneng_2025_122287 crossref_primary_10_1007_s11771_022_5053_2 crossref_primary_10_1002_nag_3434 crossref_primary_10_1016_j_soildyn_2025_109366 crossref_primary_10_1016_j_soildyn_2022_107464 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122755 crossref_primary_10_1139_cgj_2022_0314 crossref_primary_10_1016_j_oceaneng_2023_115997 crossref_primary_10_3390_en15062087 crossref_primary_10_1016_j_oceaneng_2022_111894 crossref_primary_10_1016_j_soildyn_2021_107126 crossref_primary_10_1002_nag_3481 crossref_primary_10_1016_j_oceaneng_2024_119483 crossref_primary_10_3390_app13031508 crossref_primary_10_1016_j_soildyn_2025_109556 crossref_primary_10_1016_j_soildyn_2024_108760 crossref_primary_10_1007_s11440_022_01503_x crossref_primary_10_1016_j_oceaneng_2025_122750 crossref_primary_10_1016_j_apm_2022_07_017 crossref_primary_10_1016_j_compgeo_2022_105184 crossref_primary_10_1002_nag_3528 crossref_primary_10_1002_nag_3967 crossref_primary_10_1016_j_compgeo_2022_104894 crossref_primary_10_1007_s11803_024_2227_y crossref_primary_10_1016_j_soildyn_2024_109053 crossref_primary_10_1016_j_compgeo_2024_106910 crossref_primary_10_1016_j_compgeo_2022_104853 crossref_primary_10_1016_j_jsv_2024_118520 crossref_primary_10_1155_2022_9184338 crossref_primary_10_1002_nag_3374 crossref_primary_10_3390_en15249432 crossref_primary_10_1002_nag_3411 crossref_primary_10_3390_en15249548 crossref_primary_10_1016_j_compgeo_2024_106409 crossref_primary_10_3390_app12094214 crossref_primary_10_1016_j_ijmecsci_2022_107981 crossref_primary_10_1016_j_istruc_2022_04_027 crossref_primary_10_1007_s11709_023_0907_8 crossref_primary_10_1002_nag_3819 crossref_primary_10_1016_j_jsv_2022_117278 crossref_primary_10_1080_1064119X_2021_2013358 crossref_primary_10_1016_j_oceaneng_2021_110483 crossref_primary_10_1016_j_oceaneng_2022_113253 crossref_primary_10_1680_jgeen_21_00058 crossref_primary_10_1016_j_oceaneng_2022_112080 crossref_primary_10_1016_j_soildyn_2024_108812 crossref_primary_10_3390_en15093193 crossref_primary_10_1016_j_oceaneng_2023_115492 crossref_primary_10_1016_j_compgeo_2023_105386 crossref_primary_10_1016_j_soildyn_2022_107296 crossref_primary_10_1002_nag_3389 crossref_primary_10_1016_j_oceaneng_2022_111708 crossref_primary_10_1016_j_oceaneng_2024_118574 crossref_primary_10_1002_nag_3943 crossref_primary_10_1016_j_compgeo_2022_105042 crossref_primary_10_1016_j_soildyn_2022_107651 crossref_primary_10_1016_j_oceaneng_2022_112635 crossref_primary_10_3390_s22145330 crossref_primary_10_1016_j_compgeo_2022_104635 crossref_primary_10_1080_1064119X_2022_2062269 crossref_primary_10_1016_j_compgeo_2023_105424 crossref_primary_10_1016_j_oceaneng_2022_112518 |
| Cites_doi | 10.1002/nag.2279 10.1002/nag.1024 10.1016/j.compgeo.2014.06.015 10.1007/s11440-020-01050-3 10.1016/j.compgeo.2010.03.001 10.1007/s11440-020-00989-7 10.1063/1.1721956 10.1016/j.oceaneng.2018.03.008 10.1139/cgj-2018-0816 10.12989/sem.2000.10.4.299 10.1002/nag.2681 10.1061/(ASCE)EM.1943-7889.0001724 10.1680/geot.11.P.052 10.1007/s11440-019-00833-7 10.1016/j.jsv.2017.02.037 10.1007/s11431-010-4235-6 10.1680/geot.1999.49.1.91 10.1016/j.jsv.2017.08.026 10.1007/s11440-020-01021-8 10.1016/j.soildyn.2017.04.020 10.1061/(ASCE)EM.1943-7889.0000263 10.1016/j.compgeo.2016.06.013 10.1002/(SICI)1096-9853(199704)21:4<255::AID-NAG869>3.0.CO;2-J 10.1016/j.compgeo.2018.12.014 10.1016/j.oceaneng.2021.108828 10.1007/s11440-020-00972-2 10.1007/s11440-020-00930-y 10.1016/j.compgeo.2019.02.011 10.1063/1.1712886 10.1007/s11771-015-2710-8 10.1139/cgj-2015-0231 10.1061/(ASCE)GM.1943-5622.0002165 10.1016/j.soildyn.2019.03.010 10.1007/s11771-016-3065-5 10.1007/s11440-021-01274-x 10.1007/s11440-020-01023-6 10.1016/j.soildyn.2019.106010 10.1002/nag.2164 10.1016/j.compgeo.2014.04.006 10.1002/nag.3036 10.1016/j.soildyn.2020.106148 |
| ContentType | Journal Article |
| Copyright | 2021 John Wiley & Sons Ltd. 2022 John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2021 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION 7SC 7UA 8FD C1K F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D |
| DOI | 10.1002/nag.3290 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1096-9853 |
| EndPage | 67 |
| ExternalDocumentID | 10_1002_nag_3290 NAG3290 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51878634; 52178371; 52178321; 51878185 – fundername: Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Structural Safety funderid: 2019ZDK047; 2019ZDK049 – fundername: The Innovative Research Team Program of Guangxi Natural Science Foundation funderid: 2016GXNSFGA380008 – fundername: Outstanding Youth Project of Natural Science Foundation of Zhejiang Province funderid: LR21E080005 – fundername: China Postdoctoral Science Foundation Funded Project funderid: 2020M673093 – fundername: Fundamental Research Founds for National University, China University of Geosciences (Wuhan) (Outstanding PhD Innovation funds) funderid: CUGGC09; 1910491T04 – fundername: Young Elite Scientists Sponsorship Program by CAST funderid: 2018QNRC001 |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 41~ 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWS RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~02 ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7SC 7UA 8FD C1K F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D |
| ID | FETCH-LOGICAL-a3160-5fc221d1e885ea8b73a878c7ed569e94eabe50f5e1df0aea276f5339742f5cb93 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 76 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000711092800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0363-9061 |
| IngestDate | Sun Jul 13 05:17:54 EDT 2025 Sat Nov 29 04:24:30 EST 2025 Tue Nov 18 21:48:25 EST 2025 Wed Jan 22 16:28:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a3160-5fc221d1e885ea8b73a878c7ed569e94eabe50f5e1df0aea276f5339742f5cb93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5473-1560 0000-0002-9362-0326 |
| PQID | 2609126093 |
| PQPubID | 996377 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2609126093 crossref_citationtrail_10_1002_nag_3290 crossref_primary_10_1002_nag_3290 wiley_primary_10_1002_nag_3290_NAG3290 |
| PublicationCentury | 2000 |
| PublicationDate | January 2022 2022-01-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | International journal for numerical and analytical methods in geomechanics |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2011; 137 1955; 26 2017; 41 2021; 21 2010; 37 1997; 21 2021; 225 1999; 49 2017; 68 2016; 53 2020; 15 2019; 146 2020; 57 2019; 108 2017; 395 2012; 36 2011; 4 2014; 62 2014; 61 2017; 410 1974; 100 2019; 121 2021; 16 2013; 37 2020; 131 2018; 157 2000; 10 2017; 99 1941; 12 2015; 22 2014; 38 2003; 25 2020; 134 2020; 44 2016; 80 2016; 23 2012; 62 2019; 110 Liu DJ (e_1_2_11_25_1) 2003; 25 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 Liu H (e_1_2_11_18_1) 2020; 57 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_2_1 Zheng CJ (e_1_2_11_16_1) 2017; 68 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_46_1 e_1_2_11_40_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_37_1 e_1_2_11_38_1 e_1_2_11_39_1 e_1_2_11_19_1 Veletsos AS (e_1_2_11_36_1) 1974; 100 |
| References_xml | – volume: 15 start-page: 3261 year: 2020 end-page: 3269 article-title: Development of a coupled pile‐to‐pile interaction model for the dynamic analysis of pile groups subjected to vertical loads publication-title: Acta Geotech – volume: 53 start-page: 225 issue: 2 year: 2016 end-page: 235 article-title: Three‐dimensional effects in low‐strain integrity testing of piles: analytical solution publication-title: Can Geotech J – volume: 22 start-page: 1909 issue: 5 year: 2015 end-page: 1918 article-title: Longitudinal vibration of pile in layered soil based on Rayleigh‐Love rod theory and fictitious soil‐pile model publication-title: J Cent South Univ – volume: 62 start-page: 521 issue: 6 year: 2012 end-page: 536 article-title: Dynamic Winkler modulus for axially loaded piles publication-title: Géotechnique – volume: 16 start-page: 335 year: 2021 end-page: 346 article-title: Horizontal transient response of a pile group partially embedded in multilayered transversely isotropic soils publication-title: Acta Geotech – volume: 100 start-page: 225 issue: 3 year: 1974 end-page: 246 article-title: Torsional vibration of viscoelastic foundations publication-title: J Geotech Eng – volume: 57 start-page: 127 issue: 1 year: 2020 end-page: 138 article-title: New method to calculate apparent phase velocity of open‐ended pipe pile publication-title: Can Geotech J – volume: 15 start-page: 1321 year: 2020 end-page: 1330 article-title: Vertical vibration of piles in viscoelastic non‐uniform soil overlying a rigid base publication-title: Acta Geotech – volume: 110 start-page: 44 year: 2019 end-page: 56 article-title: Dynamic soil reactions around pile‐fictitious soil pile coupled model and its application in parallel seismic method publication-title: Comput Geotech – volume: 12 start-page: 155 year: 1941 end-page: 164 article-title: General theory of three‐dimensional consolidation publication-title: J Appl Phys – volume: 137 start-page: 598 issue: 9 year: 2011 end-page: 609 article-title: Wave propagation in a pipe pile for low‐strain integrity testing publication-title: J Eng Mech – volume: 121 start-page: 168 year: 2019 end-page: 178 article-title: Dynamic response of a defect pile in layered soil subjected to longitudinal vibration in parallel seismic integrity testing publication-title: Soil Dyn Earthq Eng – volume: 62 start-page: 90 year: 2014 end-page: 99 article-title: Longitudinal vibration of a pile embedded in layered soil considering the transverse inertia effect of pile publication-title: Comput Geotech – volume: 131 year: 2020 article-title: Torsional complex impedance of pipe pile considering pile installation and soil plug effect publication-title: Soil Dyn Earthq Eng – volume: 26 start-page: 182 year: 1955 end-page: 185 article-title: Theory of elasticity and consolidation for a porous anisotropic solid publication-title: J Appl Phys – volume: 410 start-page: 231 year: 2017 end-page: 248 article-title: Influence of soil plug effect on the torsional dynamic response of a pipe pile publication-title: J Sound Vib – volume: 16 start-page: 895 year: 2021 end-page: 909 article-title: Kinematic response of pipe piles subjected to vertically propagating seismic P‐waves publication-title: Acta Geotech – volume: 21 start-page: 255 issue: 4 year: 1997 end-page: 275 article-title: Dynamic response of intact piles to impulse loads publication-title: Int J Numer Anal Meth Geomech – volume: 44 start-page: 533 year: 2020 end-page: 549 article-title: Dynamic analysis of an axially loaded pile embedded in elastic‐poroelasitc layered soil of finite thickness publication-title: Int J Numer Anal Meth Geomech – volume: 80 start-page: 190 year: 2016 end-page: 198 article-title: Torsional dynamic response of a pile embedded in layered soil based on the fictitious soil pile model publication-title: Comput Geotech – volume: 395 start-page: 328 year: 2017 end-page: 340 article-title: Analytical solution for the dynamic response of a pile with a variable‐section interface in low‐strain integrity testing publication-title: J Sound Vib – volume: 49 start-page: 91 issue: 1 year: 1999 end-page: 109 article-title: Dynamic response of a pile in a multi‐layered soil to transient torsional and axial loading publication-title: Géotechnique – volume: 41 start-page: 1196 issue: 9 year: 2017 end-page: 1214 article-title: Dynamic response of a pile considering the interaction of pile variable cross section with the surrounding layered soil publication-title: Int J Numer Anal Meth Geomech – volume: 36 start-page: 697 issue: 6 year: 2012 end-page: 707 article-title: A new approach for vertical impedance in radially inhomogeneous soil layer publication-title: Int J Numer Anal Meth Geomech – volume: 25 start-page: 283 issue: 3 year: 2003 end-page: 287 article-title: Theoretical study on torsional wave applied in low strain dynamic testing of piles publication-title: Chin J Geotech Eng – volume: 37 start-page: 2860 issue: 17 year: 2013 end-page: 2876 article-title: Soil‐pile interaction in the pile vertical vibration considering true three‐dimensional wave effect of soil publication-title: Int J Numer Anal Meth Geomech – volume: 4 start-page: 420 issue: 2 year: 2011 end-page: 430 article-title: High‐frequency interference in low strain integrity testing of large‐diameter pipe piles publication-title: Sic China Technol Sc – volume: 23 start-page: 220 year: 2016 end-page: 232 article-title: Vertical vibration of a floating pile in a saturated viscoelastic soil layer overlaying bedrock publication-title: J Cent South Univ – volume: 134 year: 2020 article-title: Dynamic pile‐side soil resistance during longitudinal vibration publication-title: Soil Dyn Earthq Eng – volume: 16 start-page: 3339 year: 2021 end-page: 3353 article-title: A continuum‐based model on axial pile‐head dynamic impedance in inhomogeneous soil publication-title: Acta Geotech – volume: 108 start-page: 117 year: 2019 end-page: 130 article-title: Torsional vibration of an end bearing pile embedded in radially inhomogeneous saturated soil publication-title: Comput Geotech – volume: 61 start-page: 57 year: 2014 end-page: 66 article-title: Vertical dynamic response of a pipe pile in saturated soil layer publication-title: Comput Geotech – volume: 10 start-page: 299 issue: 4 year: 2000 end-page: 312 article-title: Vertical and torsional soil reactions for radially inhomogeneous soil layer publication-title: Struct Eng Mech – volume: 157 start-page: 13 year: 2018 end-page: 25 article-title: Influence of soil plug effect on the vertical dynamic response of large diameter pipe piles publication-title: Ocean Eng – volume: 21 issue: 10 year: 2021 article-title: Interaction model for torsional dynamic response of thin‐wall pipe piles embedded in both vertically and radially inhomogeneous soil publication-title: Int J Geomech – volume: 38 start-page: 1724 issue: 16 year: 2014 end-page: 1743 article-title: Torsional dynamic response of a large‐diameter pipe pile in viscoelastic saturated soil publication-title: Int J Numer Anal Meth Geomech – volume: 37 start-page: 536 issue: 4 year: 2010 end-page: 544 article-title: Vertical dynamic response of an inhomogeneous viscoelastic pile publication-title: Comput Geotech – volume: 68 start-page: 1 issue: 4 year: 2017 end-page: 6 article-title: Three‐dimensional propagation of waves in piles during low‐strain integrity tests publication-title: Géotechnique – volume: 99 start-page: 35 year: 2017 end-page: 43 article-title: Dynamic torsional response of an elastic pile in a radially inhomogeneous soil publication-title: Soil Dyn Earthq Eng – volume: 146 issue: 3 year: 2019 article-title: Analytical solution for axially loaded piles in two‐layer soil publication-title: J Eng Mech – volume: 15 start-page: 2925 year: 2020 end-page: 2940 article-title: Effect of a nodular segment on the dynamic response of a tubular pile subjected to longitudinal vibration publication-title: Acta Geotech – volume: 15 start-page: 3545 year: 2020 end-page: 3558 article-title: A new dynamic interaction factor for the analysis of pile groups subjected to vertical dynamic loads publication-title: Acta Geotech – volume: 16 start-page: 317 year: 2021 end-page: 333 article-title: Quasi‐static interaction between pipe piles and multilayered saturated soft soils with a fractional viscoelastic model publication-title: Acta Geotech – volume: 225 year: 2021 article-title: A 3D analytical model for distributed low strain test and parallel seismic test of pipe piles publication-title: Ocean Eng – volume: 57 start-page: 127 issue: 1 year: 2020 end-page: 138 article-title: Benefits from using two receivers for the interpretation of low‐strain integrity tests on pipe piles publication-title: Can Geotech J – ident: e_1_2_11_29_1 doi: 10.1002/nag.2279 – volume: 68 start-page: 1 issue: 4 year: 2017 ident: e_1_2_11_16_1 article-title: Three‐dimensional propagation of waves in piles during low‐strain integrity tests publication-title: Géotechnique – ident: e_1_2_11_4_1 doi: 10.1002/nag.1024 – ident: e_1_2_11_20_1 doi: 10.1016/j.compgeo.2014.06.015 – ident: e_1_2_11_38_1 doi: 10.1007/s11440-020-01050-3 – ident: e_1_2_11_5_1 doi: 10.1016/j.compgeo.2010.03.001 – ident: e_1_2_11_10_1 doi: 10.1007/s11440-020-00989-7 – ident: e_1_2_11_45_1 doi: 10.1063/1.1721956 – ident: e_1_2_11_17_1 doi: 10.1016/j.oceaneng.2018.03.008 – ident: e_1_2_11_46_1 doi: 10.1139/cgj-2018-0816 – ident: e_1_2_11_26_1 doi: 10.12989/sem.2000.10.4.299 – ident: e_1_2_11_42_1 doi: 10.1002/nag.2681 – ident: e_1_2_11_22_1 doi: 10.1061/(ASCE)EM.1943-7889.0001724 – ident: e_1_2_11_3_1 doi: 10.1680/geot.11.P.052 – ident: e_1_2_11_7_1 doi: 10.1007/s11440-019-00833-7 – ident: e_1_2_11_43_1 doi: 10.1016/j.jsv.2017.02.037 – ident: e_1_2_11_13_1 doi: 10.1007/s11431-010-4235-6 – ident: e_1_2_11_35_1 doi: 10.1680/geot.1999.49.1.91 – ident: e_1_2_11_30_1 doi: 10.1016/j.jsv.2017.08.026 – ident: e_1_2_11_8_1 doi: 10.1007/s11440-020-01021-8 – volume: 57 start-page: 127 issue: 1 year: 2020 ident: e_1_2_11_18_1 article-title: Benefits from using two receivers for the interpretation of low‐strain integrity tests on pipe piles publication-title: Can Geotech J – ident: e_1_2_11_27_1 doi: 10.1016/j.soildyn.2017.04.020 – ident: e_1_2_11_12_1 doi: 10.1061/(ASCE)EM.1943-7889.0000263 – ident: e_1_2_11_33_1 doi: 10.1016/j.compgeo.2016.06.013 – ident: e_1_2_11_2_1 doi: 10.1002/(SICI)1096-9853(199704)21:4<255::AID-NAG869>3.0.CO;2-J – ident: e_1_2_11_28_1 doi: 10.1016/j.compgeo.2018.12.014 – ident: e_1_2_11_19_1 doi: 10.1016/j.oceaneng.2021.108828 – volume: 100 start-page: 225 issue: 3 year: 1974 ident: e_1_2_11_36_1 article-title: Torsional vibration of viscoelastic foundations publication-title: J Geotech Eng – ident: e_1_2_11_9_1 doi: 10.1007/s11440-020-00972-2 – ident: e_1_2_11_24_1 doi: 10.1007/s11440-020-00930-y – ident: e_1_2_11_39_1 doi: 10.1016/j.compgeo.2019.02.011 – ident: e_1_2_11_44_1 doi: 10.1063/1.1712886 – ident: e_1_2_11_14_1 doi: 10.1007/s11771-015-2710-8 – ident: e_1_2_11_15_1 doi: 10.1139/cgj-2015-0231 – ident: e_1_2_11_32_1 doi: 10.1061/(ASCE)GM.1943-5622.0002165 – ident: e_1_2_11_40_1 doi: 10.1016/j.soildyn.2019.03.010 – ident: e_1_2_11_34_1 doi: 10.1007/s11771-016-3065-5 – ident: e_1_2_11_23_1 doi: 10.1007/s11440-021-01274-x – ident: e_1_2_11_37_1 doi: 10.1007/s11440-020-01023-6 – ident: e_1_2_11_31_1 doi: 10.1016/j.soildyn.2019.106010 – volume: 25 start-page: 283 issue: 3 year: 2003 ident: e_1_2_11_25_1 article-title: Theoretical study on torsional wave applied in low strain dynamic testing of piles publication-title: Chin J Geotech Eng – ident: e_1_2_11_6_1 doi: 10.1002/nag.2164 – ident: e_1_2_11_11_1 doi: 10.1016/j.compgeo.2014.04.006 – ident: e_1_2_11_21_1 doi: 10.1002/nag.3036 – ident: e_1_2_11_41_1 doi: 10.1016/j.soildyn.2020.106148 |
| SSID | ssj0005096 |
| Score | 2.5573742 |
| Snippet | Low strain integrity tests (LSITs) are the most popular non‐destructive methods for pile testing. However, traditional LSITs have encountered unprecedented... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 47 |
| SubjectTerms | Defects distributed sensor technique Exact solutions Finite element method Integrity low strain integrity test Mathematical analysis Necking Pile tests Piles pipe pile Pipe piles Segregation Testing torsional vibration Velocity velocity response Wave attenuation |
| Title | Analytical solution for distributed torsional low strain integrity test for pipe pile |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnag.3290 https://www.proquest.com/docview/2609126093 |
| Volume | 46 |
| WOSCitedRecordID | wos000711092800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1096-9853 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005096 issn: 0363-9061 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7I5kEP_hanUyKInqpt2rTNcajTwxgiTnYrSfsqg7GNbeq_70vabhMUBC_pJQ9C8pL3fa_J9wAuNCcim-vQkSJAJ0g1Oopr3wllhlwrirlWnf-1E3W7cb8vn8pbleYtTKEPsUi4mZ1hz2uzwZWe3ayIhqq3a59Lout1Tm4b1KB-99zudZYXPFy5-FMpKWxV0rMuv6lsvwejJcJcxak20LS3_zPEHdgq4SVrFf6wC2s42oPNFdHBfehZHRKbwmaV4zGCriwzGrqm_BVmzNTgsUlCNhx_spktJMEKaQmC7Yzw6dzaTAYTpGaIB9Br37_cPjplcQVH-V7oOiJPOfcyD-NYoIp15Ks4itMIMxFKlAEqjcLNBXpZ7ipUPApzgoZEP3guUi39Q6iNxiM8AoYiMCyNG52aIMo4IQBfpB4S81aK6GADrqpZTtJSedyMe5gUmsk8oYlKzEQ14HzRc1KobfzQp1ktVFLut1lCrEx6pvEbcGmX5Ff7pNt6MN_jv3Y8gQ1u3jzYvEsTavPpO57CevoxH8ymZ6XXfQHhqtuU |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED7GJqgP_hanUyOIPtW1adM2-DTUObEOkU32VtL2KoOxjW3qv2-SttsEBcGX9CWBcLnrfd-1-Q7gPKKSyKaRa3DmoOHEERqCRrbh8gRpJGTO1er8r4HXbvu9Hn8uwXVxFybTh5gX3FRk6Pe1CnBVkK4vqYaKtyubcsnXK470IlaGyu1Lsxss_vAw-fxTJZd5q9CeNWm9WPs9Gy0g5jJQ1ZmmufmvPW7BRg4wSSPziG0o4XAH1pdkB3ehq5VIdBGbFK5HJHgliVLRVQ2wMCGqC48uE5LB6JNMdSsJkolLSOBOJEKd6TXj_hjlMMA96DbvOjctI2-vYAjbck2DpTGlVmKh7zMUfuTZwvf82MOEuRy5gyJCZqYMrSQ1BQrquakEh5KA0JTFEbf3oTwcDfEACDJH8TSqlGocL6ESA9gstlBybyEkIazCZWHmMM61x9W-B2GmmkxDaahQGaoKZ_OZ40xv44c5teKkwjzipqHkZdxSg12FC30mv64P24179Tz868RTWG11noIweGg_HsEaVTcgdBWmBuXZ5B2PYSX-mPWnk5PcBb8AC7ffhA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED6GE9EHf4vTqRFEn-ratGkbfBrOqjjGECd7K2l7lcHYyjb13zdJ222CguBL-pJAuNz1vu_afAdwEVFJZNPINThz0HDiCA1BI9tweYI0EjLnanX-17bX6fj9Pu9W4Ka8C5PrQ8wLbioy9PtaBThmSdpYUg0Vb9c25ZKvVx3GXRmV1dZz0Gsv_vAw-fxTJZd5q9SeNWmjXPs9Gy0g5jJQ1Zkm2PrXHrdhswCYpJl7xA5UcLQLG0uyg3vQ00okuohNStcjErySRKnoqgZYmBDVhUeXCclw_EmmupUEycUlJHAnEqHO9JpskKEchrgPveDu5fbBKNorGMK2XNNgaUyplVjo-wyFH3m28D0_9jBhLkfuoIiQmSlDK0lNgYJ6birBoSQgNGVxxO0DWBmNR3gIBJmjeBpVSjWOl1CJAWwWWyi5txCSENbgqjRzGBfa42rfwzBXTaahNFSoDFWD8_nMLNfb-GFOvTypsIi4aSh5GbfUYNfgUp_Jr-vDTvNePY_-OvEM1rqtIGw_dp6OYZ2qCxC6CFOHldnkHU9gNf6YDaaT08IDvwDG7t7_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+solution+for+distributed+torsional+low+strain+integrity+test+for+pipe+pile&rft.jtitle=International+journal+for+numerical+and+analytical+methods+in+geomechanics&rft.au=Zhang%2C+Yunpeng&rft.au=Jiang%2C+Guosheng&rft.au=Wu%2C+Wenbing&rft.au=M+Hesham+El+Naggar&rft.date=2022-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0363-9061&rft.eissn=1096-9853&rft.volume=46&rft.issue=1&rft.spage=47&rft.epage=67&rft_id=info:doi/10.1002%2Fnag.3290&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-9061&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-9061&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-9061&client=summon |