Incorporating Geological Knowledge into Deep Learning to Enhance Geochemical Anomaly Identification Related to Mineralization and Interpretability
Effective geochemical anomaly identification is crucial in mineral exploration. Recent trends have favored deep learning (DL) to decipher geochemical survey data. Yet purely data-driven DL algorithms often lack logical explanations and geological consistency, occasionally clashing with known geologi...
Uloženo v:
| Vydáno v: | Mathematical geosciences Ročník 56; číslo 6; s. 1233 - 1254 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2024
|
| Témata: | |
| ISSN: | 1874-8961, 1874-8953 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!