Low-Cost 7T-SRAM Compute-In-Memory Design based on Bit-Line Charge-Sharing based Analog-To-Digital Conversion
Although compute-in-memory (CIM) is considered as one of the promising solutions to overcome memory wall problem, the variations in analog voltage computation and analog-to-digital-converter (ADC) cost still remain as design challenges. In this paper, we present a 7T SRAM CIM that seamlessly support...
Uloženo v:
| Vydáno v: | 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) s. 1 - 8 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
ACM
30.10.2022
|
| Témata: | |
| ISSN: | 1558-2434 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Although compute-in-memory (CIM) is considered as one of the promising solutions to overcome memory wall problem, the variations in analog voltage computation and analog-to-digital-converter (ADC) cost still remain as design challenges. In this paper, we present a 7T SRAM CIM that seamlessly supports multiply-accumulation (MAC) operation between 4-bit inputs and 8-bit weights. In the proposed CIM, highly parallel and robust MAC operations are enabled by exploiting the bit-line charge-sharing scheme to simultaneously process multiple inputs. For the readout of analog MAC values, instead of adopting the conventional ADC structure, the bit-line charge-sharing is efficiently used to reduce the implementation cost of the reference voltage generations. Based on the in-SRAM reference voltage generation and the parallel analog readout in all columns, the proposed CIM efficiently reduces ADC power and area cost. In addition, the variation models from Monte-Carlo simulations are also used during training to reduce the accuracy drop due to process variations. The implementation of 256×64 7T SRAM CIM using 28nm CMOS process shows that it operates in the wide voltage range from 0.6V to 1.2V with energy efficiency of 45.8-TOPS/W at 0.6V. |
|---|---|
| ISSN: | 1558-2434 |
| DOI: | 10.1145/3508352.3549423 |