Measure and Capacity of Wandering Domains in Gevrey Near-integrable Exact Symplectic Systems

A wandering domain for a diffeomorphism We first prove that the measure (or the capacity) of these wandering domains is exponentially small, with an upper bound of the form The second part of the paper is devoted to the construction of near-integrable Gevrey systems possessing wandering domains, for...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Lazzarini, Laurent, Marco, Jean-Pierre, Sauzin, David
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Providence, Rhode Island American Mathematical Society 2019
Vydání:1
Edice:Memoirs of the American Mathematical Society
Témata:
ISBN:9781470434922, 147043492X
ISSN:0065-9266, 1947-6221
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A wandering domain for a diffeomorphism We first prove that the measure (or the capacity) of these wandering domains is exponentially small, with an upper bound of the form The second part of the paper is devoted to the construction of near-integrable Gevrey systems possessing wandering domains, for which the capacity (and thus the measure) can be estimated from below. We suppose
Bibliografie:Includes bibliographical references
January 2019, volume 257, number 1235 (fifth of 6 numbers)
ISBN:9781470434922
147043492X
ISSN:0065-9266
1947-6221
DOI:10.1090/memo/1235