Measure and Capacity of Wandering Domains in Gevrey Near-integrable Exact Symplectic Systems
A wandering domain for a diffeomorphism We first prove that the measure (or the capacity) of these wandering domains is exponentially small, with an upper bound of the form The second part of the paper is devoted to the construction of near-integrable Gevrey systems possessing wandering domains, for...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | eBook Book |
| Language: | English |
| Published: |
Providence, Rhode Island
American Mathematical Society
2019
|
| Edition: | 1 |
| Series: | Memoirs of the American Mathematical Society |
| Subjects: | |
| ISBN: | 9781470434922, 147043492X |
| ISSN: | 0065-9266, 1947-6221 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A wandering domain for a diffeomorphism
We first prove that the measure (or
the capacity) of these wandering domains is exponentially small, with an upper bound of the form
The second
part of the paper is devoted to the construction of near-integrable Gevrey systems possessing wandering domains, for which the capacity
(and thus the measure) can be estimated from below. We suppose |
|---|---|
| AbstractList | A wandering domain for a diffeomorphism
We first prove that the measure (or
the capacity) of these wandering domains is exponentially small, with an upper bound of the form
The second
part of the paper is devoted to the construction of near-integrable Gevrey systems possessing wandering domains, for which the capacity
(and thus the measure) can be estimated from below. We suppose A wandering domain for a diffeomorphism $\Psi $ of $\mathbb A^n=T^*\mathbb T^n$ is an open connected set $W$ such that $\Psi ^k(W)\cap W=\emptyset $ for all $k\in \mathbb Z^*$. The authors endow $\mathbb A^n$ with its usual exact symplectic structure. An integrable diffeomorphism, i.e., the time-one map $\Phi ^h$ of a Hamiltonian $h: \mathbb A^n\to \mathbb R$ which depends only on the action variables, has no nonempty wandering domains.The aim of this paper is to estimate the size (measure and Gromov capacity) of wandering domains in the case of an exact symplectic perturbation of $\Phi ^h$, in the analytic or Gevrey category. Upper estimates are related to Nekhoroshev theory; lower estimates are related to examples of Arnold diffusion. This is a contribution to the ``quantitative Hamiltonian perturbation theory'' initiated in previous works on the optimality of long term stability estimates and diffusion times; the emphasis here is on discrete systems because this is the natural setting to study wandering domains. |
| Author | Sauzin, David Lazzarini, Laurent Marco, Jean-Pierre |
| Author_xml | – sequence: 1 fullname: Lazzarini, Laurent – sequence: 2 fullname: Marco, Jean-Pierre – sequence: 3 fullname: Sauzin, David |
| BackLink | https://cir.nii.ac.jp/crid/1130282271181968640$$DView record in CiNii |
| BookMark | eNpVkUFv1DAQhQ20iN2yB_6BJZAQh9AZ24ntY1mWglTgAIILkmU7kxKaOEucFvbfs2FXQlxmRm8-zZPmLdlJGhIx9gThJYKF85764RyFLO-xldUGlQalbCn1fbZAq3RRCYEP_u2kskKcsAVAVRZWVNUpWwpAA6UUBh-yJYJBxMpW8hFb5fwDAARYudcW7Nt78vl2JO5Tzdd-62M77fjQ8K97gcY2XfPXQ-_blHmb-CXdjbTjH8iPRZsmuh596Ihvfvs48U-7fttRnNq4H_NEfX7MThvfZVod-xn78mbzef22uPp4-W59cVV4icpC0SioranLhmSjffDBENUhIgJIJKibSEGSVKhlQyHUtQ5BYEO6RuMjgTxjLw6Hfb6hX_n70E3Z3XUUhuEmu_-euGefH9jtOPy8pTy5v1ikNI2-c5tX61KLUqqZfHYgU9u62M4VUYIwQmhEg7YylZrNnx7N--yOlghuztLNWbo5S_kHn3GG2g |
| CitedBy_id | crossref_primary_10_1007_s00205_020_01526_2 crossref_primary_10_1088_1361_6544_abb44f |
| ContentType | eBook Book |
| Copyright | Copyright 2019 American Mathematical Society |
| Copyright_xml | – notice: Copyright 2019 American Mathematical Society |
| DBID | RYH |
| DEWEY | 516.36 |
| DOI | 10.1090/memo/1235 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISBN | 9781470449537 1470449536 |
| EISSN | 1947-6221 |
| Edition | 1 |
| ExternalDocumentID | 9781470449537 EBC5725347 BB27875449 10_1090_memo_1235 |
| GroupedDBID | --Z -~X 123 4.4 85S ABPPZ ACNCT ACNUO AEGFZ AENEX ALMA_UNASSIGNED_HOLDINGS DU5 P2P RMA WH7 YNT YQT 3.E 38. AABBV AAWPO ABARN ABQPQ ACLGV ADVEM AEKGI AERYV AFOJC AHWGJ AJFER AZZ BBABE BHYWR CZZ GEOUK RYH |
| ID | FETCH-LOGICAL-a31490-f40d98d5fe3f7abab8eedbc110031e0dfceb3e34173febbdd7bb21fe7d18ace03 |
| ISBN | 9781470434922 147043492X |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000056732&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0065-9266 |
| IngestDate | Fri Nov 08 04:33:22 EST 2024 Wed Dec 10 12:29:56 EST 2025 Thu Jun 26 21:57:07 EDT 2025 Thu Aug 14 15:24:57 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| LCCN | 2018053281 |
| LCCallNum_Ident | QA665 .L399 2019 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a31490-f40d98d5fe3f7abab8eedbc110031e0dfceb3e34173febbdd7bb21fe7d18ace03 |
| Notes | Includes bibliographical references January 2019, volume 257, number 1235 (fifth of 6 numbers) |
| OCLC | 1081116963 |
| OpenAccessLink | https://hal.science/hal-01172729v1/file/Lazzarini_Marco_Sauzin_MCWD.pdf |
| PQID | EBC5725347 |
| PageCount | 122 |
| ParticipantIDs | askewsholts_vlebooks_9781470449537 proquest_ebookcentral_EBC5725347 nii_cinii_1130282271181968640 ams_ebooks_10_1090_memo_1235 |
| PublicationCentury | 2000 |
| PublicationDate | 2019. |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 2019. |
| PublicationDecade | 2010 |
| PublicationPlace | Providence, Rhode Island |
| PublicationPlace_xml | – name: Providence, Rhode Island – name: Providence, RI – name: Providence |
| PublicationSeriesTitle | Memoirs of the American Mathematical Society |
| PublicationYear | 2019 |
| Publisher | American Mathematical Society |
| Publisher_xml | – name: American Mathematical Society |
| SSID | ssj0002093111 ssj0008047 |
| Score | 2.5666704 |
| Snippet | A wandering domain for a diffeomorphism
We first prove that the measure (or
the capacity) of these wandering domains is exponentially small, with an upper... A wandering domain for a diffeomorphism \Psi of \mathbb A^n=T^*\mathbb T^n is an open connected set W such that \Psi ^k(W)\cap W=\emptyset for all k\in \mathbb... A wandering domain for a diffeomorphism $\Psi $ of $\mathbb A^n=T^*\mathbb T^n$ is an open connected set $W$ such that $\Psi ^k(W)\cap W=\emptyset $ for all... |
| SourceID | askewsholts proquest nii ams |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Domains of holomorphy Integral domains Symplectic geometry Symplectic groups |
| TableOfContents | Introduction
--
Presentation of the results
--
Stability theory for Gevrey near-integrable maps
--
A quantitative KAM result—proof of Part (i) of Theorem
--
Coupling devices, multi-dimensional periodic domains, wandering domains
--
\texorpdfstring{Algebraic operations in <inline-formula content-type="math/mathml"> O k {\mathscr O}_k </inline-formula>}Algebraic operations
in O
--
Estimates on Gevrey maps
--
Generating functions for exact symplectic <inline-formula content-type="math/mathml"> C ∞<!--
∞ --> C^\infty
</inline-formula> maps
--
Proof of Lemma
--
Acknowledgements 4.3. Proof of Theorem C (lower bounds for wandering domains in \Aⁿ) -- 4.3.1. Overview of the proof -- 4.3.2. Standard maps with wandering discs in \A -Proof of Proposition 4.6 -- 4.3.3. Proof of Theorem C' -- \appendixtocname -- Appendix A. Algebraic operations in O -- Appendix B. Estimates on Gevrey maps -- B.1. Reminder on Gevrey maps and their composition -- B.2. A lemma on the flow of a Gevrey near-integrable Hamiltonian -- B.3. Proof of Proposition 1.7 -- B.4. Gevrey bump fuctions -- Appendix C. Generating functions for exact symplectic ^{∞} maps -- Appendix D. Proof of Lemma 2.5 -- D.1. Set-up -- D.2. Diffeomorphism property -- D.3. Study of the inverse map -- Acknowledgements -- Bibliography -- Back Cover Cover -- Title page -- Chapter 0. Introduction -- Chapter 1. Presentation of the results -- 1.1. Perturbation theory for analytic or Gevrey near-integrable maps-Theorem A -- 1.2. Wandering sets of near-integrable systems-Theorems B and C -- 1.3. Specific form of our examples and elliptic islands-Theorem D -- 1.4. Further comments -- Chapter 2. Stability theory for Gevrey near-integrable maps -- 2.1. Embedding in a Hamiltonian flow -Theorem E -- 2.2. Proof of Theorem E in the Gevrey non-analytic case -- 2.2.0. Overview -- 2.2.1. First step: finding a generating function -- 2.2.2. Second step: constructing a Hamiltonian isotopy -- 2.2.3. Completion of the proof of Theorem E -- 2.3. Proof of Theorem A (Nekhoroshev Theorem for maps) -- 2.4. Proof of Theorem B (upper bounds for wandering sets) -- Chapter 3. A quantitative KAM result-proof of Part (i) of Theorem D -- 3.1. Elliptic islands in \A with a tuning parameter-Theorem F -- 3.2. Theorem F implies Part (i) of Theorem D -- 3.3. Overview of the proof of Theorem F -- 3.4. Preliminary study near a q-periodic point -- 3.4.1. Localization -- 3.4.2. Local form -- 3.4.3. The Taylor expansion of the q iteration of G -- 3.5. Normalizations -- 3.5.1. Notations and statements -- Birkhoff normal form -- Herman normal form -- 3.5.2. Proof of Proposition 3.16 -- 3.5.3. Proof of Proposition 3.17 -- 3.5.4. Proof of Proposition 3.18 -- 3.6. The invariant curve theorem -- 3.7. Conclusion of the proof of Theorem F -- Chapter 4. Coupling devices, multi-dimensional periodic domains, wandering domains -- 4.1. Coupling devices -- 4.2. Proof of Part (ii) of Theorem D (periodic domains in \Aⁿ⁻¹) -- 4.2.1. Overview of the method -- 4.2.2. A -periodic polydisc for a near-integrable system of the form Φ^{ }∘ ^{ } in \A -- 4.2.3. A -periodic polydisc for a near-integrable system in \Aⁿ⁻² -- 4.2.4. Applying Corollary 4.2 |
| Title | Measure and Capacity of Wandering Domains in Gevrey Near-integrable Exact Symplectic Systems |
| URI | https://www.ams.org/memo/1235/ https://cir.nii.ac.jp/crid/1130282271181968640 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5725347 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470449537 |
| Volume | 257 |
| WOSCitedRecordID | wos0000056732&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6RwIGceIrQFq0QN2TVj43Xe00VigSUShSUA5K1L0tWiY3qNKT59cx413YJSIgDl1VsWTvyfM7O7OzMN4S8sjxlGkxXUDABGxRleCCtMYFlMx5qZUXKXLMJfnaWLZfi3Hfha9p2Aryqsu1WfP-vUMM9ABtLZ_8B7n5SuAG_AXQYAXYY9zzi_tI3ZHLhPlepBjZQ-2yLH20BC4YETL2SpcscP7UbAPF1BW8feMoIrKGyW6yZbG6QMxirpzzTc-94v5e7ncRDn66m-lbezAdQpDvHsbIKzsHeDom1n-T1zrEVDEn0PtaA5U2_xBqGQ6SeUhYpS-qes6TfmEaMhwyJD-M_LtOhwLzGlV3VGDiIHWHJHu_1fB7DYjJjTIzIiKewsb57uvj4-V0fQYtDkcBK3VbreWnLjsSrk95xSYnwGKUdo6yWU7eZkIlsLsGQgJFZw9WoKsvf7HHrZFw8IGMsPHlI7tjqEZkML988Jl89thSgpB22tC5ojy312NKyog5buoctbbGlA7bUY_uEfHmzuDh5G_i-GIFMYEMbwv8qNCIzs8ImBZdKqgw8HaWR_S-JbGgKbVViwT_hSWGVMoYrFUeF5SbKJDaIe0rGVV3ZZ4QacFZSGWlwG2MmLZL56FQWOrIp7Lw5n5JDUFbentw3uctYCHPUZY66nJKXt7SYb775BzsQMHsZ5jgC5ea6xDHCk3LwSjlWPIs0AzFTQju1O0E-LzlfzE9mPJ4ljD__yxQH5P7wvR6S8frq2h6Re3qzLpurF_7L-QlbnWpN |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Measure+and+capacity+of+wandering+domains+in+Gevrey+near-integrable+exact+symplectic+systems&rft.au=Lazzarini%2C+Laurent&rft.au=Marco%2C+Jean-Pierre&rft.au=Sauzin%2C+David&rft.date=2019-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470434922&rft_id=info:doi/10.1090%2Fmemo%2F1235&rft.externalDocID=BB27875449 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470449537.jpg |

