Measure and Capacity of Wandering Domains in Gevrey Near-integrable Exact Symplectic Systems

A wandering domain for a diffeomorphism We first prove that the measure (or the capacity) of these wandering domains is exponentially small, with an upper bound of the form The second part of the paper is devoted to the construction of near-integrable Gevrey systems possessing wandering domains, for...

Full description

Saved in:
Bibliographic Details
Main Authors: Lazzarini, Laurent, Marco, Jean-Pierre, Sauzin, David
Format: eBook Book
Language:English
Published: Providence, Rhode Island American Mathematical Society 2019
Edition:1
Series:Memoirs of the American Mathematical Society
Subjects:
ISBN:9781470434922, 147043492X
ISSN:0065-9266, 1947-6221
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A wandering domain for a diffeomorphism We first prove that the measure (or the capacity) of these wandering domains is exponentially small, with an upper bound of the form The second part of the paper is devoted to the construction of near-integrable Gevrey systems possessing wandering domains, for which the capacity (and thus the measure) can be estimated from below. We suppose
AbstractList A wandering domain for a diffeomorphism We first prove that the measure (or the capacity) of these wandering domains is exponentially small, with an upper bound of the form The second part of the paper is devoted to the construction of near-integrable Gevrey systems possessing wandering domains, for which the capacity (and thus the measure) can be estimated from below. We suppose
A wandering domain for a diffeomorphism $\Psi $ of $\mathbb A^n=T^*\mathbb T^n$ is an open connected set $W$ such that $\Psi ^k(W)\cap W=\emptyset $ for all $k\in \mathbb Z^*$. The authors endow $\mathbb A^n$ with its usual exact symplectic structure. An integrable diffeomorphism, i.e., the time-one map $\Phi ^h$ of a Hamiltonian $h: \mathbb A^n\to \mathbb R$ which depends only on the action variables, has no nonempty wandering domains.The aim of this paper is to estimate the size (measure and Gromov capacity) of wandering domains in the case of an exact symplectic perturbation of $\Phi ^h$, in the analytic or Gevrey category. Upper estimates are related to Nekhoroshev theory; lower estimates are related to examples of Arnold diffusion. This is a contribution to the ``quantitative Hamiltonian perturbation theory'' initiated in previous works on the optimality of long term stability estimates and diffusion times; the emphasis here is on discrete systems because this is the natural setting to study wandering domains.
Author Sauzin, David
Lazzarini, Laurent
Marco, Jean-Pierre
Author_xml – sequence: 1
  fullname: Lazzarini, Laurent
– sequence: 2
  fullname: Marco, Jean-Pierre
– sequence: 3
  fullname: Sauzin, David
BackLink https://cir.nii.ac.jp/crid/1130282271181968640$$DView record in CiNii
BookMark eNpVkUFv1DAQhQ20iN2yB_6BJZAQh9AZ24ntY1mWglTgAIILkmU7kxKaOEucFvbfs2FXQlxmRm8-zZPmLdlJGhIx9gThJYKF85764RyFLO-xldUGlQalbCn1fbZAq3RRCYEP_u2kskKcsAVAVRZWVNUpWwpAA6UUBh-yJYJBxMpW8hFb5fwDAARYudcW7Nt78vl2JO5Tzdd-62M77fjQ8K97gcY2XfPXQ-_blHmb-CXdjbTjH8iPRZsmuh596Ihvfvs48U-7fttRnNq4H_NEfX7MThvfZVod-xn78mbzef22uPp4-W59cVV4icpC0SioranLhmSjffDBENUhIgJIJKibSEGSVKhlQyHUtQ5BYEO6RuMjgTxjLw6Hfb6hX_n70E3Z3XUUhuEmu_-euGefH9jtOPy8pTy5v1ikNI2-c5tX61KLUqqZfHYgU9u62M4VUYIwQmhEg7YylZrNnx7N--yOlghuztLNWbo5S_kHn3GG2g
CitedBy_id crossref_primary_10_1007_s00205_020_01526_2
crossref_primary_10_1088_1361_6544_abb44f
ContentType eBook
Book
Copyright Copyright 2019 American Mathematical Society
Copyright_xml – notice: Copyright 2019 American Mathematical Society
DBID RYH
DEWEY 516.36
DOI 10.1090/memo/1235
DatabaseName CiNii Complete
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 9781470449537
1470449536
EISSN 1947-6221
Edition 1
ExternalDocumentID 9781470449537
EBC5725347
BB27875449
10_1090_memo_1235
GroupedDBID --Z
-~X
123
4.4
85S
ABPPZ
ACNCT
ACNUO
AEGFZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
DU5
P2P
RMA
WH7
YNT
YQT
3.E
38.
AABBV
AAWPO
ABARN
ABQPQ
ACLGV
ADVEM
AEKGI
AERYV
AFOJC
AHWGJ
AJFER
AZZ
BBABE
BHYWR
CZZ
GEOUK
RYH
ID FETCH-LOGICAL-a31490-f40d98d5fe3f7abab8eedbc110031e0dfceb3e34173febbdd7bb21fe7d18ace03
ISBN 9781470434922
147043492X
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000056732&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0065-9266
IngestDate Fri Nov 08 04:33:22 EST 2024
Wed Dec 10 12:29:56 EST 2025
Thu Jun 26 21:57:07 EDT 2025
Thu Aug 14 15:24:57 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
LCCN 2018053281
LCCallNum_Ident QA665 .L399 2019
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a31490-f40d98d5fe3f7abab8eedbc110031e0dfceb3e34173febbdd7bb21fe7d18ace03
Notes Includes bibliographical references
January 2019, volume 257, number 1235 (fifth of 6 numbers)
OCLC 1081116963
OpenAccessLink https://hal.science/hal-01172729v1/file/Lazzarini_Marco_Sauzin_MCWD.pdf
PQID EBC5725347
PageCount 122
ParticipantIDs askewsholts_vlebooks_9781470449537
proquest_ebookcentral_EBC5725347
nii_cinii_1130282271181968640
ams_ebooks_10_1090_memo_1235
PublicationCentury 2000
PublicationDate 2019.
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019.
PublicationDecade 2010
PublicationPlace Providence, Rhode Island
PublicationPlace_xml – name: Providence, Rhode Island
– name: Providence, RI
– name: Providence
PublicationSeriesTitle Memoirs of the American Mathematical Society
PublicationYear 2019
Publisher American Mathematical Society
Publisher_xml – name: American Mathematical Society
SSID ssj0002093111
ssj0008047
Score 2.5666704
Snippet A wandering domain for a diffeomorphism We first prove that the measure (or the capacity) of these wandering domains is exponentially small, with an upper...
A wandering domain for a diffeomorphism \Psi of \mathbb A^n=T^*\mathbb T^n is an open connected set W such that \Psi ^k(W)\cap W=\emptyset for all k\in \mathbb...
A wandering domain for a diffeomorphism $\Psi $ of $\mathbb A^n=T^*\mathbb T^n$ is an open connected set $W$ such that $\Psi ^k(W)\cap W=\emptyset $ for all...
SourceID askewsholts
proquest
nii
ams
SourceType Aggregation Database
Publisher
SubjectTerms Domains of holomorphy
Integral domains
Symplectic geometry
Symplectic groups
TableOfContents Introduction -- Presentation of the results -- Stability theory for Gevrey near-integrable maps -- A quantitative KAM result—proof of Part (i) of Theorem -- Coupling devices, multi-dimensional periodic domains, wandering domains -- \texorpdfstring{Algebraic operations in <inline-formula content-type="math/mathml"> O k {\mathscr O}_k </inline-formula>}Algebraic operations in O -- Estimates on Gevrey maps -- Generating functions for exact symplectic <inline-formula content-type="math/mathml"> C ∞<!-- ∞ --> C^\infty </inline-formula> maps -- Proof of Lemma -- Acknowledgements
4.3. Proof of Theorem C (lower bounds for wandering domains in \Aⁿ) -- 4.3.1. Overview of the proof -- 4.3.2. Standard maps with wandering discs in \A -Proof of Proposition 4.6 -- 4.3.3. Proof of Theorem C' -- \appendixtocname -- Appendix A. Algebraic operations in O -- Appendix B. Estimates on Gevrey maps -- B.1. Reminder on Gevrey maps and their composition -- B.2. A lemma on the flow of a Gevrey near-integrable Hamiltonian -- B.3. Proof of Proposition 1.7 -- B.4. Gevrey bump fuctions -- Appendix C. Generating functions for exact symplectic ^{∞} maps -- Appendix D. Proof of Lemma 2.5 -- D.1. Set-up -- D.2. Diffeomorphism property -- D.3. Study of the inverse map -- Acknowledgements -- Bibliography -- Back Cover
Cover -- Title page -- Chapter 0. Introduction -- Chapter 1. Presentation of the results -- 1.1. Perturbation theory for analytic or Gevrey near-integrable maps-Theorem A -- 1.2. Wandering sets of near-integrable systems-Theorems B and C -- 1.3. Specific form of our examples and elliptic islands-Theorem D -- 1.4. Further comments -- Chapter 2. Stability theory for Gevrey near-integrable maps -- 2.1. Embedding in a Hamiltonian flow -Theorem E -- 2.2. Proof of Theorem E in the Gevrey non-analytic case -- 2.2.0. Overview -- 2.2.1. First step: finding a generating function -- 2.2.2. Second step: constructing a Hamiltonian isotopy -- 2.2.3. Completion of the proof of Theorem E -- 2.3. Proof of Theorem A (Nekhoroshev Theorem for maps) -- 2.4. Proof of Theorem B (upper bounds for wandering sets) -- Chapter 3. A quantitative KAM result-proof of Part (i) of Theorem D -- 3.1. Elliptic islands in \A with a tuning parameter-Theorem F -- 3.2. Theorem F implies Part (i) of Theorem D -- 3.3. Overview of the proof of Theorem F -- 3.4. Preliminary study near a q-periodic point -- 3.4.1. Localization -- 3.4.2. Local form -- 3.4.3. The Taylor expansion of the q iteration of G -- 3.5. Normalizations -- 3.5.1. Notations and statements -- Birkhoff normal form -- Herman normal form -- 3.5.2. Proof of Proposition 3.16 -- 3.5.3. Proof of Proposition 3.17 -- 3.5.4. Proof of Proposition 3.18 -- 3.6. The invariant curve theorem -- 3.7. Conclusion of the proof of Theorem F -- Chapter 4. Coupling devices, multi-dimensional periodic domains, wandering domains -- 4.1. Coupling devices -- 4.2. Proof of Part (ii) of Theorem D (periodic domains in \Aⁿ⁻¹) -- 4.2.1. Overview of the method -- 4.2.2. A -periodic polydisc for a near-integrable system of the form Φ^{ }∘ ^{ } in \A -- 4.2.3. A -periodic polydisc for a near-integrable system in \Aⁿ⁻² -- 4.2.4. Applying Corollary 4.2
Title Measure and Capacity of Wandering Domains in Gevrey Near-integrable Exact Symplectic Systems
URI https://www.ams.org/memo/1235/
https://cir.nii.ac.jp/crid/1130282271181968640
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5725347
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470449537
Volume 257
WOSCitedRecordID wos0000056732&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6RwIGceIrQFq0QN2TVj43Xe00VigSUShSUA5K1L0tWiY3qNKT59cx413YJSIgDl1VsWTvyfM7O7OzMN4S8sjxlGkxXUDABGxRleCCtMYFlMx5qZUXKXLMJfnaWLZfi3Hfha9p2Aryqsu1WfP-vUMM9ABtLZ_8B7n5SuAG_AXQYAXYY9zzi_tI3ZHLhPlepBjZQ-2yLH20BC4YETL2SpcscP7UbAPF1BW8feMoIrKGyW6yZbG6QMxirpzzTc-94v5e7ncRDn66m-lbezAdQpDvHsbIKzsHeDom1n-T1zrEVDEn0PtaA5U2_xBqGQ6SeUhYpS-qes6TfmEaMhwyJD-M_LtOhwLzGlV3VGDiIHWHJHu_1fB7DYjJjTIzIiKewsb57uvj4-V0fQYtDkcBK3VbreWnLjsSrk95xSYnwGKUdo6yWU7eZkIlsLsGQgJFZw9WoKsvf7HHrZFw8IGMsPHlI7tjqEZkML988Jl89thSgpB22tC5ojy312NKyog5buoctbbGlA7bUY_uEfHmzuDh5G_i-GIFMYEMbwv8qNCIzs8ImBZdKqgw8HaWR_S-JbGgKbVViwT_hSWGVMoYrFUeF5SbKJDaIe0rGVV3ZZ4QacFZSGWlwG2MmLZL56FQWOrIp7Lw5n5JDUFbentw3uctYCHPUZY66nJKXt7SYb775BzsQMHsZ5jgC5ea6xDHCk3LwSjlWPIs0AzFTQju1O0E-LzlfzE9mPJ4ljD__yxQH5P7wvR6S8frq2h6Re3qzLpurF_7L-QlbnWpN
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Measure+and+capacity+of+wandering+domains+in+Gevrey+near-integrable+exact+symplectic+systems&rft.au=Lazzarini%2C+Laurent&rft.au=Marco%2C+Jean-Pierre&rft.au=Sauzin%2C+David&rft.date=2019-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470434922&rft_id=info:doi/10.1090%2Fmemo%2F1235&rft.externalDocID=BB27875449
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470449537.jpg