Exact Synthesis of 3-Qubit Quantum Circuits from Non-Binary Quantum Gates Using Multiple-Valued Logic and Group Theory

We propose an approach to optimally synthesize quantum circuits from non-permutative quantum gates such as Controlled-Square-Root-of-Not (i.e. Controlled-V). Our approach reduces the synthesis problem to multiple-valued optimization and uses group theory. We devise a novel technique that transforms...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Design, Automation and Test in Europe s. 434 - 435
Hlavní autoři: Yang, Guowu, Hung, William N. N., Song, Xiaoyu, Perkowski, Marek
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: Washington, DC, USA IEEE Computer Society 07.03.2005
IEEE
Edice:ACM Conferences
Témata:
ISBN:9780769522883, 0769522882
ISSN:1530-1591
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose an approach to optimally synthesize quantum circuits from non-permutative quantum gates such as Controlled-Square-Root-of-Not (i.e. Controlled-V). Our approach reduces the synthesis problem to multiple-valued optimization and uses group theory. We devise a novel technique that transforms the quantum logic synthesis problem from a multi-valued constrained optimization problem to a group permutation problem. The transformation enables us to utilize group theory to exploit the properties of the synthesis problem. Assuming a cost of one for each two-qubit gate, we found all reversible circuits with quantum costs of 4, 5, 6, etc, and give another algorithm to realize these reversible circuits with quantum gates.
Bibliografie:SourceType-Conference Papers & Proceedings-1
ObjectType-Conference Paper-1
content type line 25
ISBN:9780769522883
0769522882
ISSN:1530-1591
DOI:10.1109/DATE.2005.145