Multi-core acceleration of chemical kinetics for simulation and prediction

This work implements a computationally expensive chemical kinetics kernel from a large-scale community atmospheric model on three multi-core platforms: NVIDIA GPUs using CUDA, the Cell Broadband Engine, and Intel Quad-Core Xeon CPUs. A comparative performance analysis for each platform in double and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis s. 1 - 11
Hlavní autoři: Linford, John C., Michalakes, John, Vachharajani, Manish, Sandu, Adrian
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: New York, NY, USA ACM 14.11.2009
Edice:ACM Conferences
Témata:
ISBN:1605587443, 9781605587448
ISSN:2167-4329
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This work implements a computationally expensive chemical kinetics kernel from a large-scale community atmospheric model on three multi-core platforms: NVIDIA GPUs using CUDA, the Cell Broadband Engine, and Intel Quad-Core Xeon CPUs. A comparative performance analysis for each platform in double and single precision on coarse and fine grids is presented. Platform-specific design and optimization is discussed in a mechanism-agnostic way, permitting the optimization of many chemical mechanisms. The implementation of a three-stage Rosenbrock solver for SIMD architectures is discussed. When used as a template mechanism in the the Kinetic PreProcessor, the multi-core implementation enables the automatic optimization and porting of many chemical mechanisms on a variety of multi-core platforms. Speedups of 5.5x in single precision and 2.7x in double precision are observed when compared to eight Xeon cores. Compared to the serial implementation, the maximum observed speedup is 41.1x in single precision.
ISBN:1605587443
9781605587448
ISSN:2167-4329
DOI:10.1145/1654059.1654067