ADAPT: AI‐Driven Artefact Purging Technique for IMU Based Motion Capture

While IMU based motion capture offers a cost‐effective alternative to premium camera‐based systems, it often falls short in matching the latter's realism. Common distortions, such as self‐penetrating body parts, foot skating, and floating, limit the usability of these systems, particularly for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum Jg. 43; H. 8
Hauptverfasser: Schreiner, P., Netterstrøm, R., Yin, H., Darkner, S., Erleben, K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Blackwell Publishing Ltd 01.12.2024
Schlagworte:
ISSN:0167-7055, 1467-8659
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract While IMU based motion capture offers a cost‐effective alternative to premium camera‐based systems, it often falls short in matching the latter's realism. Common distortions, such as self‐penetrating body parts, foot skating, and floating, limit the usability of these systems, particularly for high‐end users. To address this, we employed reinforcement learning to train an AI agent that mimics erroneous sample motion. Since our agent operates within a simulated environment, it inherently avoids generating these distortions since it must adhere to the laws of physics. Impressively, the agent manages to mimic the sample motions while preserving their distinctive characteristics. We assessed our method's efficacy across various types of input data, showcasing an ideal blend of artefact‐laden IMU‐based data with high‐grade optical motion capture data. Furthermore, we compared the configuration of observation and action spaces with other implementations, pinpointing the most suitable configuration for our purposes. All our models underwent rigorous evaluation using a spectrum of quantitative metrics complemented by a qualitative review. These evaluations were performed using a benchmark dataset of IMU‐based motion data from actors not included in the training data.
AbstractList While IMU based motion capture offers a cost‐effective alternative to premium camera‐based systems, it often falls short in matching the latter's realism. Common distortions, such as self‐penetrating body parts, foot skating, and floating, limit the usability of these systems, particularly for high‐end users. To address this, we employed reinforcement learning to train an AI agent that mimics erroneous sample motion. Since our agent operates within a simulated environment, it inherently avoids generating these distortions since it must adhere to the laws of physics. Impressively, the agent manages to mimic the sample motions while preserving their distinctive characteristics. We assessed our method's efficacy across various types of input data, showcasing an ideal blend of artefact‐laden IMU‐based data with high‐grade optical motion capture data. Furthermore, we compared the configuration of observation and action spaces with other implementations, pinpointing the most suitable configuration for our purposes. All our models underwent rigorous evaluation using a spectrum of quantitative metrics complemented by a qualitative review. These evaluations were performed using a benchmark dataset of IMU‐based motion data from actors not included in the training data.
Author Erleben, K.
Netterstrøm, R.
Darkner, S.
Yin, H.
Schreiner, P.
Author_xml – sequence: 1
  givenname: P.
  orcidid: 0000-0002-4928-7714
  surname: Schreiner
  fullname: Schreiner, P.
  organization: Rokoko Electronics Denmark, University of Copenhagen, Department of Computer Science Denmark
– sequence: 2
  givenname: R.
  orcidid: 0009-0003-6868-5640
  surname: Netterstrøm
  fullname: Netterstrøm, R.
  organization: Rokoko Electronics Denmark
– sequence: 3
  givenname: H.
  orcidid: 0000-0002-3599-440X
  surname: Yin
  fullname: Yin, H.
  organization: University of Copenhagen, Department of Computer Science Denmark
– sequence: 4
  givenname: S.
  orcidid: 0000-0001-6114-7100
  surname: Darkner
  fullname: Darkner, S.
  organization: University of Copenhagen, Department of Computer Science Denmark
– sequence: 5
  givenname: K.
  orcidid: 0000-0001-6808-4747
  surname: Erleben
  fullname: Erleben, K.
  organization: University of Copenhagen, Department of Computer Science Denmark
BookMark eNotkEtOwzAYhC1UJNrCghtYYsUixW8n7ELLo6gVXbRrK_GjpAK7OAkSO47AGTkJhvJv5l-MZkbfCAx88BaAc4wmON2V3roJ5liSIzDETMgsF7wYgCHC6ZeI8xMwatsdQohJwYfgsZyVq_U1LOffn1-z2LxbD8vYWVfpDq76uG38Fq6tfvbNW2-hCxHOlxt4U7XWwGXomuDhtNp3fbSn4NhVL609-9cx2NzdrqcP2eLpfj4tF1lFMekyzSrDNRKCOmQIMZY4KYzIjUGocDmtHaWssFJTxjiTtWAEO4HrmjEia87oGFwccvcxpE1tp3ahjz5VqlRQ5AVDRCTX5cGlY2jbaJ3ax-a1ih8KI_WLSiVU6g8V_QElvVvM
Cites_doi 10.1145/3386569.3392474
10.1145/3450626.3459826
10.1145/311535.311539
10.1145/3386569.3392433
10.1145/3424636.3426909
10.1145/3479985
10.1145/2019406.2019444
10.1145/3450626.3459670
10.1145/3355089.3356501
10.1145/3386569.3392381
10.1111/j.1467‐8659.2009.01591.x
10.1145/545261.545277
10.1007/s00371‐006‐0376‐9
10.1145/3478513.3480570
10.1145/3306346.3322972
10.1007/978-3-7091-6874-5_1
10.1109/ICCCNT.2014.6963001
10.1145/325334.325244
10.1109/RO-MAN50785.2021.9515316
10.1145/3414685.3417836
10.1145/3355089.3356536
10.1109/PCCGA.1999.803346
10.1109/RO-MAN57019.2023.10309317
10.1111/cgf.14635
10.1145/3355089.3356499
10.1145/3550469.3555411
10.1016/j.jbiomech.2004.03.025
10.1145/3528223.3530110
ContentType Journal Article
Copyright 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.15172
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
ExternalDocumentID 10_1111_cgf_15172
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CITATION
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O8X
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
7SC
8FD
ALUQN
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-a312t-c4ad5c0663f0d22de2f76d68dd009f83bf3349e7c344547b6421f61bb4427b543
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001324647400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Fri Jul 25 21:29:14 EDT 2025
Sat Nov 29 03:41:24 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a312t-c4ad5c0663f0d22de2f76d68dd009f83bf3349e7c344547b6421f61bb4427b543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3599-440X
0000-0002-4928-7714
0000-0001-6808-4747
0009-0003-6868-5640
0000-0001-6114-7100
OpenAccessLink https://doi.org/10.1111/cgf.15172
PQID 3129894026
PQPubID 30877
ParticipantIDs proquest_journals_3129894026
crossref_primary_10_1111_cgf_15172
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_25_2
e_1_2_8_26_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_42_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_21_2
Ye Y. (e_1_2_8_39_2) 2022
e_1_2_8_43_2
Ma L.‐K. (e_1_2_8_22_2) 2021
e_1_2_8_40_2
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_15_2
e_1_2_8_36_2
Mourot L. (e_1_2_8_19_2) 2022
Geijtenbeek T. (e_1_2_8_9_2) 2012
Chentanez N. (e_1_2_8_5_2) 2018
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_11_2
e_1_2_8_32_2
References_xml – ident: e_1_2_8_21_2
  doi: 10.1145/3386569.3392474
– ident: e_1_2_8_14_2
  doi: 10.1145/3450626.3459826
– ident: e_1_2_8_16_2
  doi: 10.1145/311535.311539
– ident: e_1_2_8_32_2
– ident: e_1_2_8_35_2
– ident: e_1_2_8_17_2
  doi: 10.1145/3386569.3392433
– ident: e_1_2_8_38_2
– ident: e_1_2_8_6_2
  doi: 10.1145/3424636.3426909
– ident: e_1_2_8_30_2
  doi: 10.1145/3479985
– ident: e_1_2_8_29_2
– ident: e_1_2_8_25_2
  doi: 10.1145/2019406.2019444
– ident: e_1_2_8_23_2
  doi: 10.1145/3450626.3459670
– ident: e_1_2_8_28_2
  doi: 10.1145/3355089.3356501
– ident: e_1_2_8_34_2
  doi: 10.1145/3386569.3392381
– ident: e_1_2_8_42_2
– ident: e_1_2_8_27_2
  doi: 10.1111/j.1467‐8659.2009.01591.x
– ident: e_1_2_8_12_2
  doi: 10.1145/545261.545277
– start-page: 183
  volume-title: Computer Graphics Forum
  year: 2022
  ident: e_1_2_8_39_2
– start-page: 1
  volume-title: Proceedings of the 11th ACM SIGGRAPH Conference on Motion, Interaction and Games
  year: 2018
  ident: e_1_2_8_5_2
– ident: e_1_2_8_7_2
  doi: 10.1007/s00371‐006‐0376‐9
– ident: e_1_2_8_33_2
  doi: 10.1145/3478513.3480570
– ident: e_1_2_8_31_2
– ident: e_1_2_8_15_2
  doi: 10.1145/3306346.3322972
– ident: e_1_2_8_20_2
– ident: e_1_2_8_3_2
  doi: 10.1007/978-3-7091-6874-5_1
– ident: e_1_2_8_13_2
  doi: 10.1109/ICCCNT.2014.6963001
– start-page: 122
  volume-title: Computer Graphics Forum
  year: 2022
  ident: e_1_2_8_19_2
– ident: e_1_2_8_8_2
  doi: 10.1145/325334.325244
– ident: e_1_2_8_43_2
  doi: 10.1109/RO-MAN50785.2021.9515316
– ident: e_1_2_8_10_2
  doi: 10.1145/3414685.3417836
– ident: e_1_2_8_2_2
  doi: 10.1145/3355089.3356536
– start-page: 2492
  volume-title: Computer graphics forum
  year: 2012
  ident: e_1_2_8_9_2
– ident: e_1_2_8_40_2
– ident: e_1_2_8_4_2
  doi: 10.1109/PCCGA.1999.803346
– ident: e_1_2_8_41_2
  doi: 10.1109/RO-MAN57019.2023.10309317
– ident: e_1_2_8_18_2
  doi: 10.1111/cgf.14635
– ident: e_1_2_8_36_2
  doi: 10.1145/3355089.3356499
– start-page: 251
  volume-title: Computer Graphics Forum
  year: 2021
  ident: e_1_2_8_22_2
– ident: e_1_2_8_26_2
  doi: 10.1145/3450626.3459670
– ident: e_1_2_8_37_2
  doi: 10.1145/3550469.3555411
– ident: e_1_2_8_11_2
  doi: 10.1016/j.jbiomech.2004.03.025
– ident: e_1_2_8_24_2
  doi: 10.1145/3528223.3530110
SSID ssj0004765
Score 2.422078
Snippet While IMU based motion capture offers a cost‐effective alternative to premium camera‐based systems, it often falls short in matching the latter's realism....
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Artificial intelligence
Body parts
Configuration management
Effectiveness
End users
Machine learning
Motion capture
Qualitative analysis
Title ADAPT: AI‐Driven Artefact Purging Technique for IMU Based Motion Capture
URI https://www.proquest.com/docview/3129894026
Volume 43
WOSCitedRecordID wos001324647400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEE9RKGiFEJfIKN5dr9fc0qYVQSVEyJHCyfI-jCrABCetKnHhJ_Ab-SXMPuzgHio4cLEs20qsnc-zs7Mz34fQc67SJFaaRuAcVcS4GUWZrHgkRKKIptJIqZ3YRDqbieUymw8G39temPPPaV2Li4ts9V9NDdfA2LZ19h_M3f0oXIBzMDocwexw_CvDjyfjee7yfdOukmHSWKdmM_HGdjIM52eNEyfKOwZXW204fbsYHsCspuFLd7A4LFct40jHZhBUIIaO6dpSPG_pHNx-DmDjNDTRdK1jM9cztN64bfkD8aVXqPjBsxh0W1aTsvnUkwMLOQnCLtV3XMo9-lzatkrJ5THBP1siHz8Ned9rfbbggSA8OGfP4RRAKK7w-epj9RKiF68D1OfVnr0rjhcnJ0V-tMxfrL5FVnLMbs0H_ZVraJekSQYucXfyHh7cttWmPGmp4e27BmIqWwjW_Vs_nOnP5i5EyW-jW2FtgcceE3fQwNR30c0_GCfvoTcOHa_wePrrx0-PCtyiAgdU4A4VGGyLARXYoQJ7VOCAivtocXyUH76OgpxGVNKYbCLFSp0oG2JWI02INqRKueZCa4izK0FlRSnLTKoosyxv0rZAVzyWkjGSyoTRB2in_lqbhwjTzDCiuJCpHLGqSsqSGVgKxDDxx5LH8R561o5KsfKsKUW72oShK9zQ7aH9dryK8P2sC3hTKwkwIvzR1bcfoxtb5O2jnU1zZp6g6-p8c7pungZT_gbLgWjk
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ADAPT%3A+AI%E2%80%90Driven+Artefact+Purging+Technique+for+IMU+Based+Motion+Capture&rft.jtitle=Computer+graphics+forum&rft.au=Schreiner%2C+P&rft.au=Netterstr%C3%B8m%2C+R&rft.au=Yin%2C+H&rft.au=Darkner%2C+S&rft.date=2024-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=43&rft.issue=8&rft_id=info:doi/10.1111%2Fcgf.15172&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon