Use of Peptide Microarrays for Fast and Informative Profiling of Therapeutic Antibody Formulation Conditions
Methods to optimize the solution behavior of therapeutic proteins are frequently time-consuming, provide limited information, and often use milligram quantities of material. Here, we present a simple, versatile method that provides valuable information to guide the identification and comparison of f...
Uloženo v:
| Vydáno v: | Molecular pharmaceutics Ročník 18; číslo 11; s. 4131 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
01.11.2021
|
| Témata: | |
| ISSN: | 1543-8392, 1543-8392 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Methods to optimize the solution behavior of therapeutic proteins are frequently time-consuming, provide limited information, and often use milligram quantities of material. Here, we present a simple, versatile method that provides valuable information to guide the identification and comparison of formulation conditions for, in principle, any biopharmaceutical drug. The subject protein is incubated with a designed synthetic peptide microarray; the extent of binding to each peptide is dependent on the solution conditions. The array is washed, and the adhesion of the subject protein is detected using a secondary antibody. We exemplify the method using a well-characterized human single-chain Fv and a selection of human monoclonal antibodies. Correlations of peptide adhesion profiles can be used to establish quantitative relationships between different solution conditions, allowing subgrouping into dendrograms. Multidimensional reduction methods, such as t-distributed stochastic neighbor embedding, can be applied to compare how different monoclonals vary in their adhesion properties under different solution conditions. Finally, we screened peptide binding profiles using a selection of monoclonal antibodies for which a range of biophysical measurements were available under specified buffer conditions. We used a neural network method to train the data against aggregation temperature,
, percentage recovery after incubation at 25 °C, and melting temperature. The results demonstrate that peptide binding profiles can indeed be effectively trained on these indicators of protein stability and self-association in solution. The method opens up multiple possibilities for the application of machine learning methods in therapeutic protein formulation. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1543-8392 1543-8392 |
| DOI: | 10.1021/acs.molpharmaceut.1c00543 |