Optimal Regularity and the Free Boundary in the Parabolic Signorini Problem

We give a comprehensive treatment of the parabolic Signorini problem based on a generalization of Almgren’s monotonicity of the frequency. This includes the proof of the optimal regularity of solutions, classification of free boundary points, the regularity of the regular set and the structure of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Danielli, Donatella, Garofalo, Nicola, Petrosyan, Arshak, To, Tung
Format: E-Book Buch
Sprache:Englisch
Veröffentlicht: Providence, Rhode Island American Mathematical Society 2017
Ausgabe:1
Schriftenreihe:Memoirs of the American Mathematical Society
Schlagworte:
ISBN:9781470425470, 1470425475
ISSN:0065-9266, 1947-6221
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Inhaltsangabe:
  • Introduction -- Notation and preliminaries -- Known existence and regularity results -- Classes of solutions -- Estimates in Gaussian spaces -- The generalized frequency function -- Existence and homogeneity of blowups -- Homogeneous global solutions -- Optimal regularity of solutions -- Classification of free boundary points -- Free boundary: Regular set -- Free boundary: Singular set -- Weiss and Monneau type monotonicity formulas -- Structure of the singular set -- Estimates in Gaussian spaces: Proofs -- Parabolic Whitney’s extension theorem
  • Cover -- Title page -- Chapter 1. Introduction -- Chapter 2. Regularity of geodesic foliations -- 2.1. Transport rays -- 2.2. Whitney's extension theorem for ^{1,1} -- 2.3. Riemann normal coordinates -- 2.4. Proof of the regularity theorem -- Chapter 3. Conditioning a measure with respect to a geodesic foliation -- 3.1. Geodesics emanating from a ^{1,1}-hypersurface -- 3.2. Decomposition into ray clusters -- 3.3. Needles and Ricci curvature -- Chapter 4. The Monge-Kantorovich problem -- Chapter 5. Some applications -- 5.1. The inequalities of Buser, Ledoux and E. Milman -- 5.2. A Poincaré inequality for geodesically-convex domains -- 5.3. The isoperimetric inequality and its relatives -- Chapter 6. Further research -- Appendix: The Feldman-McCann proof of Lemma 2.4.1 -- Bibliography -- Back Cover