Szegő kernel asymptotics for high power of CR line bundles and Kodaira embedding theorems on CR manifolds
Let X be an abstract not necessarily compact orientable CR manifold of dimension 2n-1, n\geqslant 2, and let L^k be the k-th tensor power of a CR complex line bundle L over X. Given q\in \{0,1,\ldots ,n-1\}, let \Box ^{(q)}_{b,k} be the Gaffney extension of Kohn Laplacian for (0,q) forms with values...
Uložené v:
| Hlavný autor: | |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | English |
| Vydavateľské údaje: |
Providence, Rhode Island
American Mathematical Society
2018
|
| Vydanie: | 1 |
| Edícia: | Memoirs of the American Mathematical Society |
| Predmet: | |
| ISBN: | 9781470441012, 1470441012 |
| ISSN: | 0065-9266, 1947-6221 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Let X be an abstract not necessarily compact orientable CR manifold of dimension 2n-1, n\geqslant 2, and let L^k be the k-th tensor power of a CR complex line bundle L over X. Given q\in \{0,1,\ldots ,n-1\}, let \Box ^{(q)}_{b,k} be the Gaffney extension of Kohn Laplacian for (0,q) forms with values in L^k. For \lambda \geq 0, let \Pi ^{(q)}_{k,\leq \lambda} :=E((-\infty ,\lambda ]), where E denotes the spectral measure of \Box ^{(q)}_{b,k}. In this work, the author proves that \Pi ^{(q)}_{k,\leq k^{-N_0}}F^*_k, F_k\Pi ^{(q)}_{k,\leq k^{-N_0}}F^*_k, N_0\geq 1, admit asymptotic expansions with respect to k on the non-degenerate part of the characteristic manifold of \Box ^{(q)}_{b,k}, where F_k is some kind of microlocal cut-off function. Moreover, we show that F_k\Pi ^{(q)}_{k,\leq 0}F^*_k admits a full asymptotic expansion with respect to k if \Box ^{(q)}_{b,k} has small spectral gap property with respect to F_k and \Pi^{(q)}_{k,\leq 0} is k-negligible away the diagonal with respect to F_k. By using these asymptotics, the authors establish almost Kodaira embedding theorems on CR manifolds and Kodaira embedding theorems on CR manifolds with transversal CR S^1 action. |
|---|---|
| AbstractList | Let X be an abstract not necessarily compact orientable CR manifold of dimension 2n-1, n\geqslant 2, and let L^k be the k-th tensor power of a CR complex line bundle L over X. Given q\in \{0,1,\ldots ,n-1\}, let \Box ^{(q)}_{b,k} be the Gaffney extension of Kohn Laplacian for (0,q) forms with values in L^k. For \lambda \geq 0, let \Pi ^{(q)}_{k,\leq \lambda} :=E((-\infty ,\lambda ]), where E denotes the spectral measure of \Box ^{(q)}_{b,k}. In this work, the author proves that \Pi ^{(q)}_{k,\leq k^{-N_0}}F^*_k, F_k\Pi ^{(q)}_{k,\leq k^{-N_0}}F^*_k, N_0\geq 1, admit asymptotic expansions with respect to k on the non-degenerate part of the characteristic manifold of \Box ^{(q)}_{b,k}, where F_k is some kind of microlocal cut-off function. Moreover, we show that F_k\Pi ^{(q)}_{k,\leq 0}F^*_k admits a full asymptotic expansion with respect to k if \Box ^{(q)}_{b,k} has small spectral gap property with respect to F_k and \Pi^{(q)}_{k,\leq 0} is k-negligible away the diagonal with respect to F_k. By using these asymptotics, the authors establish almost Kodaira embedding theorems on CR manifolds and Kodaira embedding theorems on CR manifolds with transversal CR S^1 action. Let |
| Author | Hsiao, Chin-Yu |
| Author_xml | – sequence: 1 fullname: Hsiao, Chin-Yu |
| BackLink | https://cir.nii.ac.jp/crid/1130000796065752832$$DView record in CiNii |
| BookMark | eNo9kc2O0zAUhQ3MINqhC97AEkiIRZh7bSe2l1ANP2IkJEBsLae-aTNN7E6cYQRvwUPxXiS0YmMv_Pmce89ZsrOYIjH2DOE1goXLnvp0iQL1A7ZEpUEpXYJ9yBZolS4qIfARW1ltjm8IKM7YAqAqCyuq6pwtBaABJbFUjycFkBaM0EY_YaucbwBAQCXA4ILdfP1F2z-_-Z6GSB33-Wd_GNPYbjJv0sB37XbHD-meBp4avv7CuzYSr-9i6ChzHwP_lIJvB8-prymENm75uKM0UJ95ivOP3se2SV3IT9l547tMq9N9wb6_u_q2_lBcf37_cf3muvBy2sAWG9PU0lpJvvJa1spAWRuNFn1DjSZjRF0KaWzQIWildeUDkoJgpNK1NI28YK-Owj7v6T7vUjdm96OjOqV9dv9jmyIVE_vyyB6GdHtHeXT_sA3FcfCdu3q7LsspSy0n8sWRjG3rNu18IsopS9C2mgbXpTByFnx-Mu-zO1kiuLlWN9fq5lrlX_lqiW0 |
| ContentType | eBook Book |
| Copyright | Copyright 2018 American Mathematical Society |
| Copyright_xml | – notice: Copyright 2018 American Mathematical Society |
| DBID | RYH |
| DEWEY | 516.36 |
| DOI | 10.1090/memo/1217 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISBN | 1470447509 9781470447502 |
| EISSN | 1947-6221 |
| Edition | 1 |
| ExternalDocumentID | 9781470447502 EBC5501873 BB26730382 10_1090_memo_1217 |
| GroupedDBID | --Z -~X 123 4.4 85S ABPPZ ACNCT ACNUO AEGFZ AENEX ALMA_UNASSIGNED_HOLDINGS DU5 P2P RMA WH7 YNT YQT 3.E 38. AABBV AAWPO ABARN ABQPQ ACLGV ADVEM AERYV AFOJC AHWGJ AJFER AZNFR AZZ BBABE CZZ GEOUK RYH |
| ID | FETCH-LOGICAL-a30659-c8fb3993ea6a73b4805b87191afef7e882b52389d7dd74776ad1e40d8347b38f3 |
| ISBN | 9781470441012 1470441012 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000444638700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0065-9266 |
| IngestDate | Fri Nov 08 04:33:13 EST 2024 Wed Dec 10 12:14:52 EST 2025 Thu Jun 26 22:14:29 EDT 2025 Thu Aug 14 15:24:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| LCCN | 2018043154 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a30659-c8fb3993ea6a73b4805b87191afef7e882b52389d7dd74776ad1e40d8347b38f3 |
| Notes | Includes bibliographical references (p. 141-142) Volume 254, number 1217 (fifth of 5 numbers), July 2018 |
| OCLC | 1039082787 |
| PQID | EBC5501873 |
| PageCount | 154 |
| ParticipantIDs | askewsholts_vlebooks_9781470447502 proquest_ebookcentral_EBC5501873 nii_cinii_1130000796065752832 ams_ebooks_10_1090_memo_1217 |
| PublicationCentury | 2000 |
| PublicationDate | [2018] |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – year: 2018 text: [2018] |
| PublicationDecade | 2010 |
| PublicationPlace | Providence, Rhode Island |
| PublicationPlace_xml | – name: Providence, Rhode Island – name: Providence, R.I – name: Providence |
| PublicationSeriesTitle | Memoirs of the American Mathematical Society |
| PublicationYear | 2018 |
| Publisher | American Mathematical Society |
| Publisher_xml | – name: American Mathematical Society |
| SSID | ssj0002062081 ssj0008047 ssib056874512 |
| Score | 2.5530708 |
| SecondaryResourceType | review_article |
| Snippet | Let Let X be an abstract not necessarily compact orientable CR manifold of dimension 2n-1, n\geqslant 2, and let L^k be the k-th tensor power of a CR complex line... Let $X$ be an abstract not necessarily compact orientable CR manifold of dimension $2n-1$, $n\geqslant 2$, and let $L^k$ be the $k$-th tensor power of a CR... |
| SourceID | askewsholts proquest nii ams |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | CR submanifolds Functions of several complex variables Integral geometry |
| TableOfContents | Introduction and statement of the main results
--
More properties of the phase <inline-formula content-type="math/mathml"> φ ( x , y , s
) \varphi (x,y,s)
</inline-formula>
--
Preliminaries
--
Semi-classical <inline-formula content-type="math/mathml"> ◻ b ,
k ( q ) \Box
^{(q)}_{b,k} </inline-formula> and the characteristic manifold for <inline-formula
content-type="math/mathml"> ◻
b , k ( q )
\Box ^{(q)}_{b,k}
</inline-formula>
--
The heat equation for the local operatot <inline-formula content-type="math/mathml"> ◻ s ( q ) \Box ^{(q)}_s </inline-formula>
--
Semi-classical Hodge decomposition theorems for <inline-formula content-type="math/mathml">
◻
s , k ( q ) \Box ^{(q)}_{s,k} </inline-formula> in some
non-degenerate part of <inline-formula content-type="math/mathml">
Σ \Sigma
</inline-formula>
--
Szegö kernel asymptotics for lower energy forms
--
Almost Kodaira embedding Theorems on CR manifolds
--
Asymptotic expansion of the Szegö kernel
--
Szegő kernel asymptotics and Kodairan embedding theorems on CR manifolds with transversal CR <inline-formula
content-type="math/mathml"> S
1 S^1
</inline-formula> actions
--
Szegő kernel asymptotics on some non-compact CR manifolds
--
The proof of Theorem Cover -- Title page -- Chapter 1. Introduction and statement of the main results -- 1.1. Main results: Szegő kernel asymptotics for lower energy forms and almost Kodaira embedding Theorems on CR manifolds -- 1.2. Main results: Szegő kernel asymptotics -- 1.3. Main results: Szegő kernel asymptotics and Kodairan embedding theorems on CR manifolds with transversal CR ¹ actions -- Chapter 2. More properties of the phase ( , , ) -- Chapter 3. Preliminaries -- 3.1. Some standard notations -- 3.2. Set up and Terminology -- Chapter 4. Semi-classical \Box^{( )}_{ , } and the characteristic manifold for \Box^{( )}_{ , } -- Chapter 5. The heat equation for the local operatot \Box^{( )}_{ } -- 5.1. \Box^{( )}_{ } and the eikonal equation for \Box^{( )}_{ } -- 5.2. The transport equations for \Box^{( )}_{ } -- 5.3. Microlocal Hodge decomposition theorems for \Box^{( )}_{ } in -- 5.4. The tangential Hessian of ( , , ) -- Chapter 6. Semi-classical Hodge decomposition theorems for \Box^{( )}_{ , } in some non-degenerate part of Σ -- Chapter 7. Szegö kernel asymptotics for lower energy forms -- 7.1. Asymptotic upper bounds -- 7.2. Kernel of the spectral function -- 7.3. Szegö kernel asymptotics for lower energy forms -- Chapter 8. Almost Kodaira embedding Theorems on CR manifolds -- Chapter 9. Asymptotic expansion of the Szegö kernel -- Chapter 10. Szegő kernel asymptotics and Kodairan embedding theorems on CR manifolds with transversal CR ¹ actions -- 10.1. CR manifolds in projective spaces -- 10.2. Compact Heisenberg groups -- 10.3. Holomorphic line bundles over a complex torus -- Chapter 11. Szegő kernel asymptotics on some non-compact CR manifolds -- 11.1. The partial Fourier transform and the operator ^{( )}_{ , } -- 11.2. The small spectral gap property for \Box⁽⁰⁾_{ , } with respect to ⁽⁰⁾_{ , } 11.3. Szegő kernel asymptotics on Γ×\Real, where Γ=\Complexⁿ⁻¹ or Γ is a bounded strongly pseudoconvex domain in \Complexⁿ⁻¹ -- Chapter 12. The proof of Theorem 5.28 -- References -- Back Cover |
| Title | Szegő kernel asymptotics for high power of CR line bundles and Kodaira embedding theorems on CR manifolds |
| URI | https://www.ams.org/memo/1217/ https://cir.nii.ac.jp/crid/1130000796065752832 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5501873 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470447502 |
| Volume | 254 |
| WOSCitedRecordID | wos000444638700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELXowoE9lS-x0CIL0VMUNYmTOL7uaqFSUUFVQeUUObFDQzfJKtmtSv8FP4r_xYzzsavtAXHgYsXRJtb6JfEbz8wbQt4lnGWMC2Gn2vGxhJmyJZeRHQYyYIKBSaGMiOtHfnYWXV6Kz13d0caUE-BlGd3eiuV_hRrOAdiYOvsPcA83hRNwDKBDC7BDu8OIh26X1HGnvx_NgiPhWte6LvXCks3PYrmqjBIzhhOiNrG1xLpoJgrj3DIcM1mj0EKr1XxaKZnX0tJFopXqUqmqWhfGqwBXoFxGVi3UQMVPmly2261XeWl_W29vI7jRzjbCxj80qMWiGkk1yJEMNqfrcwc4lNNGP9_7AjsCQxYLXVS4J-C1iZk7ktbTqRfCl4VFsHbu8RBs5ocf5p--nA6bY54TesBVTCJeP1qvz9X3e5ko4RzjaMc4lpHLbcZkLJtrWCNg_VhBb6_M83tLreEPF_tkhDklT8gDXT4l482fb56RHwjb71-0hYxuQUYBMoqQUQMZrTI6O6cIGe0gowAZ7SCjA2S0h4xWJV4xQPacfH0_v5id2F0BDFsy9HfbaZQlyCC1DCVniR85QQIWrnBlpjOuwTpKAuBcQnGlwC7koVSuhtcrYj5PWJSxF2RUVqV-SSjQRpWyULBEAuVUTsKVDpiEhdLztc7CCTmAqYuNi76J29AEJ8aZjXFmJ-Tt1pzGN4vuhwMkwDy9CTmEqY7THFsXHaXAQNFEBpsAS2JNCO1BaAfqApDj-XQWoLIkZ6_-covX5PHm6T0go1W91ofkUXqzypv6Tfcc_QHpSV4O |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Szeg%C5%91+kernel+asymptotics+for+high+power+of+CR+line+bundles+and+Kodaira+embedding+theorems+on+CR+manifolds&rft.au=Hsiao%2C+Chin-Yu&rft.date=2018-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470441012&rft_id=info:doi/10.1090%2Fmemo%2F1217&rft.externalDocID=BB26730382 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470447502.jpg |

