Szegő kernel asymptotics for high power of CR line bundles and Kodaira embedding theorems on CR manifolds

Let X be an abstract not necessarily compact orientable CR manifold of dimension 2n-1, n\geqslant 2, and let L^k be the k-th tensor power of a CR complex line bundle L over X. Given q\in \{0,1,\ldots ,n-1\}, let \Box ^{(q)}_{b,k} be the Gaffney extension of Kohn Laplacian for (0,q) forms with values...

Celý popis

Uložené v:
Podrobná bibliografia
Hlavný autor: Hsiao, Chin-Yu
Médium: E-kniha Kniha
Jazyk:English
Vydavateľské údaje: Providence, Rhode Island American Mathematical Society 2018
Vydanie:1
Edícia:Memoirs of the American Mathematical Society
Predmet:
ISBN:9781470441012, 1470441012
ISSN:0065-9266, 1947-6221
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Let X be an abstract not necessarily compact orientable CR manifold of dimension 2n-1, n\geqslant 2, and let L^k be the k-th tensor power of a CR complex line bundle L over X. Given q\in \{0,1,\ldots ,n-1\}, let \Box ^{(q)}_{b,k} be the Gaffney extension of Kohn Laplacian for (0,q) forms with values in L^k. For \lambda \geq 0, let \Pi ^{(q)}_{k,\leq \lambda} :=E((-\infty ,\lambda ]), where E denotes the spectral measure of \Box ^{(q)}_{b,k}. In this work, the author proves that \Pi ^{(q)}_{k,\leq k^{-N_0}}F^*_k, F_k\Pi ^{(q)}_{k,\leq k^{-N_0}}F^*_k, N_0\geq 1, admit asymptotic expansions with respect to k on the non-degenerate part of the characteristic manifold of \Box ^{(q)}_{b,k}, where F_k is some kind of microlocal cut-off function. Moreover, we show that F_k\Pi ^{(q)}_{k,\leq 0}F^*_k admits a full asymptotic expansion with respect to k if \Box ^{(q)}_{b,k} has small spectral gap property with respect to F_k and \Pi^{(q)}_{k,\leq 0} is k-negligible away the diagonal with respect to F_k. By using these asymptotics, the authors establish almost Kodaira embedding theorems on CR manifolds and Kodaira embedding theorems on CR manifolds with transversal CR S^1 action.
AbstractList Let X be an abstract not necessarily compact orientable CR manifold of dimension 2n-1, n\geqslant 2, and let L^k be the k-th tensor power of a CR complex line bundle L over X. Given q\in \{0,1,\ldots ,n-1\}, let \Box ^{(q)}_{b,k} be the Gaffney extension of Kohn Laplacian for (0,q) forms with values in L^k. For \lambda \geq 0, let \Pi ^{(q)}_{k,\leq \lambda} :=E((-\infty ,\lambda ]), where E denotes the spectral measure of \Box ^{(q)}_{b,k}. In this work, the author proves that \Pi ^{(q)}_{k,\leq k^{-N_0}}F^*_k, F_k\Pi ^{(q)}_{k,\leq k^{-N_0}}F^*_k, N_0\geq 1, admit asymptotic expansions with respect to k on the non-degenerate part of the characteristic manifold of \Box ^{(q)}_{b,k}, where F_k is some kind of microlocal cut-off function. Moreover, we show that F_k\Pi ^{(q)}_{k,\leq 0}F^*_k admits a full asymptotic expansion with respect to k if \Box ^{(q)}_{b,k} has small spectral gap property with respect to F_k and \Pi^{(q)}_{k,\leq 0} is k-negligible away the diagonal with respect to F_k. By using these asymptotics, the authors establish almost Kodaira embedding theorems on CR manifolds and Kodaira embedding theorems on CR manifolds with transversal CR S^1 action.
Let
Author Hsiao, Chin-Yu
Author_xml – sequence: 1
  fullname: Hsiao, Chin-Yu
BackLink https://cir.nii.ac.jp/crid/1130000796065752832$$DView record in CiNii
BookMark eNo9kc2O0zAUhQ3MINqhC97AEkiIRZh7bSe2l1ANP2IkJEBsLae-aTNN7E6cYQRvwUPxXiS0YmMv_Pmce89ZsrOYIjH2DOE1goXLnvp0iQL1A7ZEpUEpXYJ9yBZolS4qIfARW1ltjm8IKM7YAqAqCyuq6pwtBaABJbFUjycFkBaM0EY_YaucbwBAQCXA4ILdfP1F2z-_-Z6GSB33-Wd_GNPYbjJv0sB37XbHD-meBp4avv7CuzYSr-9i6ChzHwP_lIJvB8-prymENm75uKM0UJ95ivOP3se2SV3IT9l547tMq9N9wb6_u_q2_lBcf37_cf3muvBy2sAWG9PU0lpJvvJa1spAWRuNFn1DjSZjRF0KaWzQIWildeUDkoJgpNK1NI28YK-Owj7v6T7vUjdm96OjOqV9dv9jmyIVE_vyyB6GdHtHeXT_sA3FcfCdu3q7LsspSy0n8sWRjG3rNu18IsopS9C2mgbXpTByFnx-Mu-zO1kiuLlWN9fq5lrlX_lqiW0
ContentType eBook
Book
Copyright Copyright 2018 American Mathematical Society
Copyright_xml – notice: Copyright 2018 American Mathematical Society
DBID RYH
DEWEY 516.36
DOI 10.1090/memo/1217
DatabaseName CiNii Complete
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 1470447509
9781470447502
EISSN 1947-6221
Edition 1
ExternalDocumentID 9781470447502
EBC5501873
BB26730382
10_1090_memo_1217
GroupedDBID --Z
-~X
123
4.4
85S
ABPPZ
ACNCT
ACNUO
AEGFZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
DU5
P2P
RMA
WH7
YNT
YQT
3.E
38.
AABBV
AAWPO
ABARN
ABQPQ
ACLGV
ADVEM
AERYV
AFOJC
AHWGJ
AJFER
AZNFR
AZZ
BBABE
CZZ
GEOUK
RYH
ID FETCH-LOGICAL-a30659-c8fb3993ea6a73b4805b87191afef7e882b52389d7dd74776ad1e40d8347b38f3
ISBN 9781470441012
1470441012
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000444638700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0065-9266
IngestDate Fri Nov 08 04:33:13 EST 2024
Wed Dec 10 12:14:52 EST 2025
Thu Jun 26 22:14:29 EDT 2025
Thu Aug 14 15:24:57 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCN 2018043154
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a30659-c8fb3993ea6a73b4805b87191afef7e882b52389d7dd74776ad1e40d8347b38f3
Notes Includes bibliographical references (p. 141-142)
Volume 254, number 1217 (fifth of 5 numbers), July 2018
OCLC 1039082787
PQID EBC5501873
PageCount 154
ParticipantIDs askewsholts_vlebooks_9781470447502
proquest_ebookcentral_EBC5501873
nii_cinii_1130000796065752832
ams_ebooks_10_1090_memo_1217
PublicationCentury 2000
PublicationDate [2018]
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: [2018]
PublicationDecade 2010
PublicationPlace Providence, Rhode Island
PublicationPlace_xml – name: Providence, Rhode Island
– name: Providence, R.I
– name: Providence
PublicationSeriesTitle Memoirs of the American Mathematical Society
PublicationYear 2018
Publisher American Mathematical Society
Publisher_xml – name: American Mathematical Society
SSID ssj0002062081
ssj0008047
ssib056874512
Score 2.5530708
SecondaryResourceType review_article
Snippet Let
Let X be an abstract not necessarily compact orientable CR manifold of dimension 2n-1, n\geqslant 2, and let L^k be the k-th tensor power of a CR complex line...
Let $X$ be an abstract not necessarily compact orientable CR manifold of dimension $2n-1$, $n\geqslant 2$, and let $L^k$ be the $k$-th tensor power of a CR...
SourceID askewsholts
proquest
nii
ams
SourceType Aggregation Database
Publisher
SubjectTerms CR submanifolds
Functions of several complex variables
Integral geometry
TableOfContents Introduction and statement of the main results -- More properties of the phase <inline-formula content-type="math/mathml"> φ ( x , y , s ) \varphi (x,y,s) </inline-formula> -- Preliminaries -- Semi-classical <inline-formula content-type="math/mathml"> ◻ b , k ( q ) \Box ^{(q)}_{b,k} </inline-formula> and the characteristic manifold for <inline-formula content-type="math/mathml"> ◻ b , k ( q ) \Box ^{(q)}_{b,k} </inline-formula> -- The heat equation for the local operatot <inline-formula content-type="math/mathml"> ◻ s ( q ) \Box ^{(q)}_s </inline-formula> -- Semi-classical Hodge decomposition theorems for <inline-formula content-type="math/mathml"> ◻ s , k ( q ) \Box ^{(q)}_{s,k} </inline-formula> in some non-degenerate part of <inline-formula content-type="math/mathml"> Σ \Sigma </inline-formula> -- Szegö kernel asymptotics for lower energy forms -- Almost Kodaira embedding Theorems on CR manifolds -- Asymptotic expansion of the Szegö kernel -- Szegő kernel asymptotics and Kodairan embedding theorems on CR manifolds with transversal CR <inline-formula content-type="math/mathml"> S 1 S^1 </inline-formula> actions -- Szegő kernel asymptotics on some non-compact CR manifolds -- The proof of Theorem
Cover -- Title page -- Chapter 1. Introduction and statement of the main results -- 1.1. Main results: Szegő kernel asymptotics for lower energy forms and almost Kodaira embedding Theorems on CR manifolds -- 1.2. Main results: Szegő kernel asymptotics -- 1.3. Main results: Szegő kernel asymptotics and Kodairan embedding theorems on CR manifolds with transversal CR ¹ actions -- Chapter 2. More properties of the phase ( , , ) -- Chapter 3. Preliminaries -- 3.1. Some standard notations -- 3.2. Set up and Terminology -- Chapter 4. Semi-classical \Box^{( )}_{ , } and the characteristic manifold for \Box^{( )}_{ , } -- Chapter 5. The heat equation for the local operatot \Box^{( )}_{ } -- 5.1. \Box^{( )}_{ } and the eikonal equation for \Box^{( )}_{ } -- 5.2. The transport equations for \Box^{( )}_{ } -- 5.3. Microlocal Hodge decomposition theorems for \Box^{( )}_{ } in -- 5.4. The tangential Hessian of ( , , ) -- Chapter 6. Semi-classical Hodge decomposition theorems for \Box^{( )}_{ , } in some non-degenerate part of Σ -- Chapter 7. Szegö kernel asymptotics for lower energy forms -- 7.1. Asymptotic upper bounds -- 7.2. Kernel of the spectral function -- 7.3. Szegö kernel asymptotics for lower energy forms -- Chapter 8. Almost Kodaira embedding Theorems on CR manifolds -- Chapter 9. Asymptotic expansion of the Szegö kernel -- Chapter 10. Szegő kernel asymptotics and Kodairan embedding theorems on CR manifolds with transversal CR ¹ actions -- 10.1. CR manifolds in projective spaces -- 10.2. Compact Heisenberg groups -- 10.3. Holomorphic line bundles over a complex torus -- Chapter 11. Szegő kernel asymptotics on some non-compact CR manifolds -- 11.1. The partial Fourier transform and the operator ^{( )}_{ , } -- 11.2. The small spectral gap property for \Box⁽⁰⁾_{ , } with respect to ⁽⁰⁾_{ , }
11.3. Szegő kernel asymptotics on Γ×\Real, where Γ=\Complexⁿ⁻¹ or Γ is a bounded strongly pseudoconvex domain in \Complexⁿ⁻¹ -- Chapter 12. The proof of Theorem 5.28 -- References -- Back Cover
Title Szegő kernel asymptotics for high power of CR line bundles and Kodaira embedding theorems on CR manifolds
URI https://www.ams.org/memo/1217/
https://cir.nii.ac.jp/crid/1130000796065752832
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5501873
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470447502
Volume 254
WOSCitedRecordID wos000444638700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELXowoE9lS-x0CIL0VMUNYmTOL7uaqFSUUFVQeUUObFDQzfJKtmtSv8FP4r_xYzzsavtAXHgYsXRJtb6JfEbz8wbQt4lnGWMC2Gn2vGxhJmyJZeRHQYyYIKBSaGMiOtHfnYWXV6Kz13d0caUE-BlGd3eiuV_hRrOAdiYOvsPcA83hRNwDKBDC7BDu8OIh26X1HGnvx_NgiPhWte6LvXCks3PYrmqjBIzhhOiNrG1xLpoJgrj3DIcM1mj0EKr1XxaKZnX0tJFopXqUqmqWhfGqwBXoFxGVi3UQMVPmly2261XeWl_W29vI7jRzjbCxj80qMWiGkk1yJEMNqfrcwc4lNNGP9_7AjsCQxYLXVS4J-C1iZk7ktbTqRfCl4VFsHbu8RBs5ocf5p--nA6bY54TesBVTCJeP1qvz9X3e5ko4RzjaMc4lpHLbcZkLJtrWCNg_VhBb6_M83tLreEPF_tkhDklT8gDXT4l482fb56RHwjb71-0hYxuQUYBMoqQUQMZrTI6O6cIGe0gowAZ7SCjA2S0h4xWJV4xQPacfH0_v5id2F0BDFsy9HfbaZQlyCC1DCVniR85QQIWrnBlpjOuwTpKAuBcQnGlwC7koVSuhtcrYj5PWJSxF2RUVqV-SSjQRpWyULBEAuVUTsKVDpiEhdLztc7CCTmAqYuNi76J29AEJ8aZjXFmJ-Tt1pzGN4vuhwMkwDy9CTmEqY7THFsXHaXAQNFEBpsAS2JNCO1BaAfqApDj-XQWoLIkZ6_-covX5PHm6T0go1W91ofkUXqzypv6Tfcc_QHpSV4O
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Szeg%C5%91+kernel+asymptotics+for+high+power+of+CR+line+bundles+and+Kodaira+embedding+theorems+on+CR+manifolds&rft.au=Hsiao%2C+Chin-Yu&rft.date=2018-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470441012&rft_id=info:doi/10.1090%2Fmemo%2F1217&rft.externalDocID=BB26730382
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470447502.jpg