Machine Learning for Mobile Practical Guide to Building Intelligent Mobile Applications Powered by Machine Learning

This book will help you build intelligent mobile applications for Android and iOS using machine learning. In the process, you will use popular machine learning toolkits such as TensorFlow Lite, Core ML, ML Kit and Fritz to build and deploy state-of-the-art machine learning models for mobile devices.

Uložené v:
Podrobná bibliografia
Hlavní autori: Gopalakrishnan, Revathi, Venkateswarlu, Avinash
Médium: E-kniha
Jazyk:English
Vydavateľské údaje: Birmingham Packt Publishing, Limited 2018
Packt Publishing Limited
Packt Publishing
Vydanie:1
Predmet:
ISBN:1788629353, 9781788629355
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This book will help you build intelligent mobile applications for Android and iOS using machine learning. In the process, you will use popular machine learning toolkits such as TensorFlow Lite, Core ML, ML Kit and Fritz to build and deploy state-of-the-art machine learning models for mobile devices.
AbstractList Leverage the power of machine learning on mobiles and build intelligent mobile applications with easeKey FeaturesBuild smart mobile applications for Android and iOS devicesUse popular machine learning toolkits such as Core ML and TensorFlow LiteExplore cloud services for machine learning that can be used in mobile appsBook DescriptionMachine learning presents an entirely unique opportunity in software development. It allows smartphones to produce an enormous amount of useful data that can be mined, analyzed, and used to make predictions. This book will help you master machine learning for mobile devices with easy-to-follow, practical examples.You will begin with an introduction to machine learning on mobiles and grasp the fundamentals so you become well-acquainted with the subject. You will master supervised and unsupervised learning algorithms, and then learn how to build a machine learning model using mobile-based libraries such as Core ML, TensorFlow Lite, ML Kit, and Fritz on Android and iOS platforms. In doing so, you will also tackle some common and not-so-common machine learning problems with regard to Computer Vision and other real-world domains.By the end of this book, you will have explored machine learning in depth and implemented on-device machine learning with ease, thereby gaining a thorough understanding of how to run, create, and build real-time machine-learning applications on your mobile devices.What you will learnBuild intelligent machine learning models that run on Android and iOSUse machine learning toolkits such as Core ML, TensorFlow Lite, and moreLearn how to use Google Mobile Vision in your mobile appsBuild a spam message detection system using Linear SVMUsing Core ML to implement a regression model for iOS devicesBuild image classification systems using TensorFlow Lite and Core MLWho this book is forIf you are a mobile app developer or a machine learning enthusiast keen to use machine learning to build smart mobile applications, this book is for you. Some experience with mobile application development is all you need to get started with this book. Prior experience with machine learning will be an added bonus
This book will help you build intelligent mobile applications for Android and iOS using machine learning. In the process, you will use popular machine learning toolkits such as TensorFlow Lite, Core ML, ML Kit and Fritz to build and deploy state-of-the-art machine learning models for mobile devices.
Author Venkateswarlu, Avinash
Gopalakrishnan, Revathi
Author_xml – sequence: 1
  fullname: Gopalakrishnan, Revathi
– sequence: 2
  fullname: Venkateswarlu, Avinash
BookMark eNplj0tLw0AQgFd8oK05evLSm3iI7iPZ3Rw11AekeBGvYR-zbWzM6m5q8d8bjCDFucx88PHBTNBB5ztA6IzgKzzMdSEkEVJySjIq9lCyw_toMkLBcnY0AJaUYolZcYySGF-HAMOYYE5P0PlCmVXTwawCFbqmW86cD7OF100Lp-jQqTZC8run6OVu_lw-pNXT_WN5U6WKDU2aioJrIEYR56zRgvNMAuQsp8bygmeEUuYIUVzhTBhirAVXYKKdzR1VLNNsii7HsIpr2MaVb_tYf7agvV_Heue3P3er2h6ChWXYfA1H_aaC-edejO578B8biH39kzTQ9UG19fy2zDmVVAj2DeknXy8
ContentType eBook
DOI 10.0000/9781788621427
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781788621427
1788621425
Edition 1
1st edition.
ExternalDocumentID 9781788621427
EBC5628277
GroupedDBID -VX
38.
AABBV
AAFKH
AAKGN
AANYM
AAZEP
AAZGR
ABARN
ABCYV
ABIWA
ABMRC
ABRSK
ABWNX
ACBYE
ACCPI
ACLGV
ADBND
ADVEM
AECLD
AEHEP
AEIUR
AFQEX
AHWGJ
AJFER
ALMA_UNASSIGNED_HOLDINGS
APVFW
ATDNW
AZZ
BBABE
CZZ
DUGUG
E2F
EBSCA
GEOUK
IHRAH
L7C
OHILO
OODEK
PASLL
QD8
UE6
6XM
ABQPQ
ACIWJ
AFOJC
AK3
DRU
ECOWB
O7H
XI1
YSPEL
ID FETCH-LOGICAL-a30392-796be1ca1ffdcb76648ee5352cd69641223f11a6a047c1cddef901bfd5f2a34b3
ISBN 1788629353
9781788629355
IngestDate Fri Nov 08 05:13:54 EST 2024
Fri Nov 21 20:06:04 EST 2025
Wed Dec 10 12:08:20 EST 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident Q325.5 .G673 2018
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a30392-796be1ca1ffdcb76648ee5352cd69641223f11a6a047c1cddef901bfd5f2a34b3
OCLC 1082208039
PQID EBC5628277
PageCount 263
ParticipantIDs askewsholts_vlebooks_9781788621427
walterdegruyter_marc_9781788621427
proquest_ebookcentral_EBC5628277
PublicationCentury 2000
PublicationDate 2018
[2018]
2018-12-31
PublicationDateYYYYMMDD 2018-01-01
2018-12-31
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationPlace Birmingham
PublicationPlace_xml – name: Birmingham
– name: Birmingham, UK
PublicationYear 2018
Publisher Packt Publishing, Limited
Packt Publishing Limited
Packt Publishing
Publisher_xml – name: Packt Publishing, Limited
– name: Packt Publishing Limited
– name: Packt Publishing
RestrictionsOnAccess restricted access
SSID ssj0003001062
Score 2.0873377
Snippet This book will help you build intelligent mobile applications for Android and iOS using machine learning. In the process, you will use popular machine learning...
Leverage the power of machine learning on mobiles and build intelligent mobile applications with easeKey FeaturesBuild smart mobile applications for Android...
SourceID askewsholts
walterdegruyter
proquest
SourceType Aggregation Database
Publisher
SubjectTerms COM004000 COMPUTERS / Intelligence (AI) & Semantics
COMPUTERS / Data Modeling & Design
COMPUTERS / Programming / Mobile Devices
Subtitle Practical Guide to Building Intelligent Mobile Applications Powered by Machine Learning
TableOfContents Chapter 9: Neural Networks on Mobile -- Introduction to neural networks -- Communication steps of  a neuron -- The activation function -- Arrangement of neurons -- Types of neural networks -- Image recognition solution -- Creating a TensorFlow image recognition model -- What does TensorFlow do? -- Retraining the model -- About bottlenecks -- Converting the TensorFlow model into the Core ML model -- Writing the iOS mobile application -- Handwritten digit recognition solution -- Introduction to Keras -- Installing Keras -- Solving the problem -- Defining the problem statement -- Problem solution -- Preparing the data -- Defining the model's architecture -- Compiling and fitting the model -- Converting the Keras model into the Core ML model -- Creating the iOS mobile application -- Summary -- Chapter 10: Mobile Application Using Google Vision -- Features of Google Cloud Vision -- Sample mobile application using Google Cloud Vision -- How does label detection work? -- Prerequisites -- Preparations -- Understanding the Application -- Output -- Summary -- Chapter 11: The Future of ML on Mobile Applications -- Key ML mobile applications -- Facebook -- Google Maps -- Snapchat -- Tinder -- Netflix -- Oval Money -- ImprompDo -- Dango -- Carat -- Uber -- GBoard -- Key innovation areas -- Personalization applications -- Healthcare -- Targeted promotions and marketing -- Visual and audio recognition -- E-commerce -- Finance management -- Gaming and entertainment -- Enterprise apps -- Real estate -- Agriculture -- Energy -- Mobile security -- Opportunities for stakeholders -- Hardware manufacturers -- Mobile operating system vendors -- Third-party mobile ML SDK providers -- ML mobile application developers -- Summary -- Question and Answers -- FAQs -- Data science -- What is data science? -- Where is data science used? -- What is big data? -- What is data mining?
Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Chapter 1: Introduction to Machine Learning on Mobile -- Definition of machine learning -- When is it appropriate to go for machine learning systems? -- The machine learning process -- Defining the machine learning problem -- Preparing the data -- Building the model -- Selecting the right machine learning algorithm -- Training the machine learning model -- Testing the model -- Evaluation of the model -- Making predictions/Deploying in the field -- Types of learning -- Supervised learning -- Unsupervised learning -- Semi-supervised learning -- Reinforcement learning -- Challenges in machine learning -- Why use machine learning on mobile devices? -- Ways to implement machine learning in mobile applications -- Utilizing machine learning service providers for a machine learning model -- Ways to train the machine learning model -- On a desktop (training in the cloud) -- On a device -- Ways to carry out the inference - making predictions -- Inference on a server -- Inference on a device -- Popular mobile machine learning tools and SDKs -- Skills needed to implement on-device machine learning -- Summary -- Chapter 2: Supervised and Unsupervised Learning Algorithms -- Introduction to supervised learning algorithms -- Deep dive into supervised learning algorithms -- Naive Bayes -- Decision trees -- Linear regression -- Logistic regression -- Support vector machines -- Random forest -- Introduction to unsupervised learning algorithms -- Deep dive into unsupervised learning algorithms -- Clustering algorithms -- Clustering methods -- Hierarchical agglomerative clustering methods -- K-means clustering -- Association rule learning algorithm -- Summary -- References -- Chapter 3: Random Forest on iOS -- Introduction to algorithms -- Decision tree
Advantages of the decision tree algorithm -- Disadvantages of decision trees -- Advantages of decision trees -- Random forests -- Solving the problem using random forest in Core ML -- Dataset -- Naming the dataset -- Technical requirements -- Creating the model file using scikit-learn -- Converting the scikit model to the Core ML model -- Creating an iOS mobile application using the Core ML model -- Summary -- Further reading -- Chapter 4: TensorFlow Mobile in Android -- An introduction to TensorFlow -- TensorFlow Lite components -- Model-file format -- Interpreter -- Ops/Kernel -- Interface to hardware acceleration -- The architecture of a mobile machine learning application -- Understanding the model concepts -- Writing the mobile application using the TensorFlow model -- Writing our first program -- Creating and Saving the TF model -- Freezing the graph -- Optimizing the model file -- Creating the Android app -- Copying the TF Model -- Creating an activity -- Summary -- Chapter 5: Regression Using Core ML in iOS -- Introduction to regression -- Linear regression -- Dataset -- Dataset naming -- Understanding the basics of Core ML -- Solving the problem using regression in Core ML -- Technical requirements -- How to create the model file using scikit-learn -- Running and testing the model -- Importing the model into the iOS project -- Writing the iOS application -- Running the iOS application -- Further reading -- Summary -- Chapter 6: The ML Kit SDK -- Understanding ML Kit -- ML Kit APIs -- Text recognition -- Face detection -- Barcode scanning -- Image labeling -- Landmark recognition -- Custom model inference -- Creating a text recognition app using Firebase on-device APIs -- Creating a text recognition app using Firebase on-cloud APIs -- Face detection using ML Kit -- Face detection concepts -- Sample solution for face detection using ML Kit
Relationship between data science and big data -- What are artificial neural networks? -- What is AI? -- How are data science, AI, and machine learning interrelated? -- Machine learning framework -- Caffe2 -- scikit-learn -- TensorFlow -- Core ML -- Mobile machine learning project implementation -- What are the high-level important items to be considered before starting the project? -- What are the roles and skills required to implement a mobile machine learning project? -- What should you focus on when testing the mobile machine learning project? -- What is the help that the domain expert will provide to the machine learning project? -- What are the common pitfalls in machine learning projects? -- Installation -- Python -- Python dependencies -- Xcode -- References -- Other Books You May Enjoy -- Index
Running the app -- Summary -- Chapter 7: Spam Message Detection -- Understanding NLP -- Introducing NLP -- Text-preprocessing techniques -- Removing noise -- Normalization -- Standardization -- Feature engineering -- Entity extraction -- Topic modeling -- Bag-of-words model -- Statistical Engineering -- TF-IDF -- TF -- Inverse Document Frequency (IDF) -- TF-IDF -- Classifying/clustering the text -- Understanding linear SVM algorithm -- Solving the problem using linear SVM in Core ML -- About the data -- Technical requirements -- Creating the Model file using Scikit Learn -- Converting the scikit-learn model into the Core ML model -- Writing the iOS application -- Summary -- Chapter 8: Fritz -- Introduction to Fritz -- Prebuilt ML models -- Ability to use custom models -- Model management -- Hand-on samples using Fritz -- Using the existing TensorFlow for mobile model in an Android application using Fritz -- Registering with Fritz -- Uploading the model file (.pb or .tflite) -- Setting up Android and registering the app -- Adding Fritz's TFMobile library -- Adding dependencies to the project -- Registering the FritzJob service in your Android Manifest -- Replacing the TensorFlowInferenceInterface class with Fritz Interpreter -- Building and running the application -- Deploying a new version of your model -- Creating an android application using fritz pre-built models -- Adding dependencies to the project -- Registering the Fritz JobService in your Android Manifest -- Creating the app layout and components -- Coding the application -- Using the existing Core ML model in an iOS application using Fritz -- Registering with Fritz -- Creating a new project in Fritz -- Uploading the model file (.pb or .tflite) -- Creating an Xcode project -- Installing Fritz dependencies -- Adding code -- Building and running the iOS mobile application -- Summary
Machine Learning for Mobile: Practical guide to building intelligent mobile applications powered by machine learning
Title Machine Learning for Mobile
URI https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5628277
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781788621427&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFH9iLYdxYMA2jY9NEeIaUTfGH1dQYdIYIASIW-Q4NqtapVOTFvjveXY-aKod2IGLlTjPjuJf9L78_B7AgRAog9FiC4nSPKQs4qGkmoaWCZROqVQq8Xlmz_nFhbi_l1dVzbbclxPgWSaenuTfd4Ua-xBsd3T2P-BuJsUOvEbQsUXYsV3SiJvbqiCTj4s0dcrUMkDy9yQZjhvwztBEHquRqypf1SW-NnMXf1gT3Jls5LTPRzUdzzzfmA8zlf9ZdA4QseQcuFJ6VCw6tNqnpkojkqAVzFzmNf4vluoEWhlF0aZrp65eEilNoF9r2Afo9ulRRDvQPRtc3v5qfGGRt0z7ZQpU98LD1rg1WFP5CHk-yoMib5kC648-qCA1D9PZc1FvYnvd4GYDusYdGNmEFZNtwae6TEZQcc3PsFsBE9TABAhMUALzBe5OBzcnP8OqJkWoUNhLtEYkSwzRilib6oQzRoUxLkeOTplklKC6ZQlRTPUo10Sj9LCociU2PbJ9FdEk-gqdbJKZbxBYZZAbWttLTUp1z0jKRZS6nWglhLR2G_YXvjuej_3-eR63Fmcbgno5Yv-8CuqNB8cnqNuKPkeS_aVlil2elPY8O28h2oWPr3_ZHnSK6cx8h1U9L4b59EcF6wtZ7TkG
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Machine+Learning+for+Mobile&rft.au=Gopalakrishnan%2C+Revathi&rft.au=Venkateswarlu%2C+Avinash&rft.date=2018-01-01&rft.pub=Packt+Publishing+Limited&rft.isbn=9781788621427&rft_id=info:doi/10.0000%2F9781788621427&rft.externalDBID=n%2Fa&rft.externalDocID=9781788621427
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97817886%2F9781788621427.jpg