Hybrid realizability for intuitionistic and classical choice

In intuitionistic realizability like Kleene's or Kreisel's, the axiom of choice is trivially realized. It is even provable in Martin-Löf's intuitionistic type theory. In classical logic, however, even the weaker axiom of countable choice proves the existence of non-computable function...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science s. 575 - 584
Hlavní autor: Blot, Valentin
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: New York, NY, USA ACM 05.07.2016
Edice:ACM Conferences
Témata:
ISBN:9781450343916, 1450343910
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In intuitionistic realizability like Kleene's or Kreisel's, the axiom of choice is trivially realized. It is even provable in Martin-Löf's intuitionistic type theory. In classical logic, however, even the weaker axiom of countable choice proves the existence of non-computable functions. This logical strength comes at the price of a complicated computational interpretation which involves strong recursion schemes like bar recursion. We take the best from both worlds and define a realizability model for arithmetic and the axiom of choice which encompasses both intuitionistic and classical reasoning. In this model two versions of the axiom of choice can co-exist in a single proof: intuitionistic choice and classical countable choice. We interpret intuitionistic choice efficiently, however its premise cannot come from classical reasoning. Conversely, our version of classical choice is valid in full classical logic, but it is restricted to the countable case and its realizer involves bar recursion. Having both versions allows us to obtain efficient extracted programs while keeping the provability strength of classical logic.
ISBN:9781450343916
1450343910
DOI:10.1145/2933575.2934511