Principles and practices of molecular properties : theory, modeling, and simulations
A comprehensive yet accessible exploration of quantum chemical methods for the determination of molecular properties of spectroscopic relevance Molecular properties can be probed both through experiment and simulation. This book bridges these two worlds, connecting the experimentalist's macrosc...
Uloženo v:
| Hlavní autoři: | , , |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken
John Wiley & Sons
2018
John Wiley & Sons, Incorporated Wiley-Blackwell Wiley |
| Vydání: | 1 |
| Edice: | Principles and Practices of Molecular Properties: Theory, Modeling and Simulations |
| Témata: | |
| ISBN: | 9780470725627, 0470725621, 9781118794821, 1118794826 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Obsah:
- 6.7 Adiabatic Vibronic Theory for Electronic Excitation Processes -- 6.7.1 Franck-Condon Integrals -- 6.7.2 Vibronic Effects in a Diatomic System -- 6.7.3 Linear Coupling Model -- 6.7.4 Herzberg-Teller Corrections and Vibronically Induced Transitions -- Further Reading -- Chapter 7 Approximate Electronic State Response Theory -- 7.1 Reference State Parameterizations -- 7.1.1 Single Determinant -- 7.1.2 Configuration Interaction -- 7.1.3 Multiconfiguration Self‐Consistent Field -- 7.1.4 Coupled Cluster -- 7.2 Equations of Motion -- 7.2.1 Ehrenfest Theorem -- 7.2.2 Quasi‐Energy Derivatives -- 7.3 Response Functions -- 7.3.1 Single Determinant Approaches -- 7.3.2 Configuration Interaction -- 7.3.3 Multiconfiguration Self‐Consistent Field -- 7.3.4 Matrix Structure in the SCF, CI, and MCSCF Approximations -- 7.3.5 Coupled Cluster -- 7.4 Residue Analysis -- 7.5 Relaxation -- Further Reading -- Chapter 8 Response Functions and Spectroscopies -- 8.1 Nuclear Interactions -- 8.1.1 Nuclear Charge Distribution -- 8.1.2 Hyperfine Structure -- 8.1.2.1 Nuclear Magnetic Dipole Moment -- 8.1.2.2 Nuclear Electric Quadrupole Moment -- 8.2 Zeeman Interaction and Electron Paramagnetic Resonance -- 8.3 Polarizabilities -- 8.3.1 Linear Polarizability -- 8.3.1.1 Weak Intermolecular Forces -- 8.3.2 Nonlinear Polarizabilities -- 8.4 Magnetizability -- 8.4.1 The Origin Dependence of the Magnetizability -- 8.4.2 Magnetizabilities from Magnetically Induced Currents -- 8.4.3 Isotropic Magnetizabilities and Pascal's Rule -- 8.5 Electronic Absorption and Emission Spectroscopies -- 8.5.1 Visible and Ultraviolet Absorption -- 8.5.2 Fluorescence Spectroscopy -- 8.5.3 Phosphorescence -- 8.5.4 Multiphoton Absorption -- 8.5.4.1 Multiphoton Absorption Cross Sections -- 8.5.4.2 Few‐State Models for Two‐Photon Absorption Cross Section -- 8.5.4.3 General Multiphoton Absorption Processes
- Chapter 4 Symmetry -- 4.1 Fundamentals -- 4.1.1 Symmetry Operations and Groups -- 4.1.2 Group Representation -- 4.2 Time Symmetries -- 4.3 Spatial Symmetries -- 4.3.1 Spatial Inversion -- 4.3.2 Rotations -- Further Reading -- Chapter 5 Exact‐State Response Theory -- 5.1 Responses in Two‐Level System -- 5.2 Molecular Electric Properties -- 5.3 Reference‐State Parameterizations -- 5.4 Equations of Motion -- 5.4.1 Time Evolution of Projection Amplitudes -- 5.4.2 Time Evolution of Rotation Amplitudes -- 5.5 Response Functions -- 5.5.1 First‐Order Properties -- 5.5.2 Second‐Order Properties -- 5.5.3 Third‐Order Properties -- 5.5.4 Fourth‐Order Properties -- 5.5.5 Higher‐Order Properties -- 5.6 Dispersion -- 5.7 Oscillator Strength and Sum Rules -- 5.8 Absorption -- 5.9 Residue Analysis -- 5.10 Relaxation -- 5.10.1 Density Operator -- 5.10.2 Liouville Equation -- 5.10.3 Density Matrix from Perturbation Theory -- 5.10.4 Linear Response Functions from the Density Matrix -- 5.10.5 Nonlinear Response Functions from the Density Matrix -- 5.10.6 Relaxation in Wave Function Theory -- 5.10.7 Absorption Cross Section -- 5.10.8 Einstein Coefficients -- Further Reading -- Chapter 6 Electronic and Nuclear Contributions to Molecular Properties -- 6.1 Born-Oppenheimer Approximation -- 6.2 Separation of Response Functions -- 6.3 Molecular Vibrations and Normal Coordinates -- 6.4 Perturbation Theory for Vibrational Wave Functions -- 6.5 Zero‐Point Vibrational Contributions to Properties -- 6.5.1 First‐Order Anharmonic Contributions -- 6.5.2 Importance of Zero‐Point Vibrational Corrections -- 6.5.3 Temperature Effects -- 6.6 Pure Vibrational Contributions to Properties -- 6.6.1 Perturbation Theory Approach -- 6.6.2 Pure Vibrational Effects from an Analysis of the Electric‐Field Dependence of the Molecular Geometry
- Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction -- Chapter 2 Quantum Mechanics -- 2.1 Fundamentals -- 2.1.1 Postulates of Quantum Mechanics -- 2.1.2 Lagrangian and Hamiltonian Formalisms -- 2.1.3 Wave Functions and Operators -- 2.2 Time Evolution of Wave Functions -- 2.3 Time Evolution of Expectation Values -- 2.4 Variational Principle -- Further Reading -- Chapter 3 Particles and Fields -- 3.1 Microscopic Maxwell's Equations -- 3.1.1 General Considerations -- 3.1.2 The Stationary Case -- 3.1.3 The General Case -- 3.1.4 Electromagnetic Potentials and Gauge Freedom -- 3.1.5 Electromagnetic Waves and Polarization -- 3.1.6 Electrodynamics: Relativistic and Nonrelativistic Formulations -- 3.2 Particles in Electromagnetic Fields -- 3.2.1 The Classical Mechanical Hamiltonian -- 3.2.2 The Quantum‐Mechanical Hamiltonian -- 3.3 Electric and Magnetic Multipoles -- 3.3.1 Multipolar Gauge -- 3.3.2 Multipole Expansions -- 3.3.3 The Electric Dipole Approximation and Beyond -- 3.3.4 Origin Dependence of Electric and Magnetic Multipoles -- 3.3.5 Electric Multipoles -- 3.3.5.1 General Versus Traceless Forms -- 3.3.5.2 What We Can Learn from Symmetry -- 3.3.6 Magnetic Multipoles -- 3.3.7 Electric Dipole Radiation -- 3.4 Macroscopic Maxwell's Equations -- 3.4.1 Spatial Averaging -- 3.4.2 Polarization and Magnetization -- 3.4.3 Maxwell's Equations in Matter -- 3.4.4 Constitutive Relations -- 3.5 Linear Media -- 3.5.1 Boundary Conditions -- 3.5.2 Polarization in Linear Media -- 3.5.3 Electromagnetic Waves in a Linear Medium -- 3.5.4 Frequency Dependence of the Permittivity -- 3.5.4.1 Kramers-Kronig Relations -- 3.5.4.2 Relaxation in the Debye Model -- 3.5.4.3 Resonances in the Lorentz Model -- 3.5.4.4 Refraction and Absorption -- 3.5.5 Rotational Averages -- 3.5.6 A Note About Dimensions, Units, and Magnitudes -- Further Reading
- 8.5.5 X‐ray Absorption -- 8.5.5.1 Core‐Excited States -- 8.5.5.2 Field Polarization -- 8.5.5.3 Static Exchange Approximation -- 8.5.5.4 Complex or Damped Response Theory -- 8.6 Birefringences and Dichroisms -- 8.6.1 Natural Optical Activity -- 8.6.2 Electronic Circular Dichroism -- 8.6.3 Nonlinear Birefringences -- 8.6.3.1 Magnetic Circular Dichroism -- 8.6.3.2 Electric Field Gradient‐Induced Birefringence -- 8.7 Vibrational Spectroscopies -- 8.7.1 Infrared Absorption -- 8.7.1.1 Double‐Harmonic Approximation -- 8.7.1.2 Anharmonic Corrections -- 8.7.2 Vibrational Circular Dichroism -- 8.7.3 Raman Scattering -- 8.7.3.1 Raman Scattering from a Classical Point of View -- 8.7.3.2 Raman Scattering from a Quantum Mechanical Point of View -- 8.7.4 Vibrational Raman Optical Activity -- 8.8 Nuclear Magnetic Resonance -- 8.8.1 The NMR Experiment -- 8.8.2 NMR Parameters -- Further Reading -- Appendix A Abbreviations -- Appendix B Units -- Appendix C Second Quantization -- C.1 Creation and Annihilation Operators -- C.2 Fock Space -- C.3 The Number Operator -- C.4 The Electronic Hamiltonian on Second‐Quantized Form -- C.5 Spin in Second Quantization -- Appendix D Fourier Transforms -- Appendix E Operator Algebra -- Appendix F Spin Matrix Algebra -- Appendix G Angular Momentum Algebra -- Appendix H Variational Perturbation Theory -- Appendix I Two‐Level Atom -- I.1 Rabi Oscillations -- I.2 Time‐Dependent Perturbation Theory -- I.3 The Quasi‐energy Approach -- Index -- EULA

