Computer Aided Verification 33rd International Conference, CAV 2021, Virtual Event, July 20–23, 2021, Proceedings, Part I

This open access two-volume set LNCS 12759 and 12760 constitutes the refereed proceedings of the 33rd International Conference on Computer Aided Verification, CAV 2021, held virtually in July 2021. The 63 full papers presented together with 16 tool papers and 5 invited papers were carefully reviewed...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Silva, Alexandra, Leino, K. Rustan M
Médium: E-kniha
Jazyk:angličtina
Vydáno: Cham Springer Nature 2021
Springer International Publishing AG
Vydání:1
Edice:Lecture Notes in Computer Science; Theoretical Computer Science and General Issues
Témata:
ISBN:9783030816858, 3030816850, 9783030816841, 3030816842
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Obsah:
  • References -- Robustness Verification of Semantic Segmentation Neural Networks Using Relaxed Reachability -- 1 Introduction -- 2 Preliminaries and Problem Formulation -- 2.1 ImageStars -- 2.2 Range of a Specific Input in an ImageStar -- 2.3 Semantic Segmentation Networks and Reachability -- 2.4 Adversarial Attacks and Robustness -- 2.5 Robustness Verification Problem Formulation -- 3 Reachability of SSNs Using Relaxed ImageStars -- 3.1 Reachability of a Transposed (Dilated) Convolutional Layer -- 3.2 Relaxed Reachability of a ReLU Layer -- 3.3 Reachability of a Pixel-Classification Layer -- 4 Verification Algorithm -- 5 Evaluation -- 5.1 Robustness and Sensitivity of Different Network Architectures -- 5.2 Verification Performance -- 5.3 Reducing Verification Time with Relaxation -- 5.4 Conservativeness of Different Relaxation Heuristics -- 6 Related Work -- 7 Conclusion -- References -- PEREGRiNN: Penalized-Relaxation Greedy Neural Network Verifier -- 1 Introduction -- 2 Problem Formulation -- 3 PEREGRiNN Overview -- 4 PEREGRiNN Enhancements -- 4.1 Sum-of-Slacks Penalty -- 4.2 Max-Slack Conditioning Priority -- 4.3 Layer-wise-Weighted Penalty -- 4.4 Initial Counterexample Search by Sampling -- 5 Experiments -- 5.1 Adversarial Robustness Verification Task -- 5.2 Ablation Experiments -- 5.3 Comparison with Other NN Verifiers -- 6 Discussion: Analogy to SAT Solvers -- 7 Conclusion -- References -- Concurrency and Blockchain -- Isla: Integrating Full-Scale ISA Semantics and Axiomatic Concurrency Models -- 1 Introduction -- 2 Implementation -- 2.1 Symbolic Execution for Sail -- 2.2 Checking a Litmus Test -- 2.3 Syntactic Dependency Analysis -- 2.4 Web Interface -- 3 System Litmus Tests -- 4 Results and Comparisons -- References -- Summing up Smart Transitions -- 1 Introduction -- 2 Preliminaries -- 3 Sum Logic (SL) -- 4 Decidability of SL
  • Intro -- Preface -- Organization -- Contents - Part I -- Contents - Part II -- Invited Papers -- NNREPAIR: Constraint-Based Repair of Neural Network Classifiers -- 1 Introduction -- 2 Background -- 3 Example -- 4 Approach -- 4.1 Intermediate-Layer Repair -- 4.2 Last-Layer Repair -- 4.3 Combining Experts -- 5 Evaluation -- 5.1 Scenarios -- 5.2 Experiment Set-Up -- 5.3 Results -- 5.4 Discussion -- 6 Related Work -- 7 Conclusion and Future Work -- References -- Balancing Automation and Control for Formal Verification of Microprocessors -- 1 Introduction -- 2 Our FV Tools -- 3 Challenges of Verifying a Single x86 instruction -- 3.1 Front-End and Microcode Verification -- 3.2 Verification of Execution Units -- 3.3 Regressions -- 4 FGL -- 4.1 Example -- 4.2 Extracting Boolean Variables -- 4.3 Composing Boolean Functions -- 5 Conclusion -- References -- Algebraic Program Analysis -- 1 Introduction -- 2 Regular Algebraic Program Analysis -- 2.1 Transition-Formula Interpretations -- 2.2 Weak Interpretations -- 3 Semantic Foundations -- 3.1 Semantic Equations -- 3.2 Abstract Interpretation -- 3.3 Discussion -- 4 Interprocedural Analysis -- 4.1 Motivation: Newtonian Program Analysis -- 4.2 Algebraic Program Analysis for Linear Equations -- 4.3 Discussion -- 5 Termination Analysis -- 5.1 Non-terminating State-Formula Interpretations -- 5.2 The Instantiation of the Recipe -- 6 Recap -- 7 Related Work -- 8 Open Problems -- References -- Programmable Program Synthesis -- 1 Introduction -- 1.1 A Synthesis Tale -- 1.2 Programmable Synthesis Frameworks -- 2 An Overview of Programmable Program Synthesis -- 2.1 Why Isn't Existing Work in Synthesis Programmable? -- 2.2 What Does a Programmable Synthesis Framework Look Like? -- 3 Programmable-Synthesis Specifications -- 3.1 Semantics-Guided Synthesis -- 3.2 Adding Quantitative Syntactic Objectives
  • 4 Programmable-Synthesis Solvers -- 4.1 General Solving Procedures for SemGuS Problems -- 4.2 Meta Algorithms for Solving SemGuS Problems -- 5 The Future of Programmable Synthesis and SemGuS -- 5.1 What Are We Working on Next? -- 5.2 What Can the Synthesis Community Do? -- References -- Deductive Synthesis of Programs with Pointers: Techniques, Challenges, Opportunities -- 1 Introduction -- 2 State of the Art -- 2.1 Specifications -- 2.2 The Basics of Deductive Synthesis -- 2.3 Synthesis with Recursion and Auxiliary Functions -- 2.4 Implementation and Empirical Results -- 3 Proof Search -- 3.1 Pruning via Proof Strategies -- 3.2 Prioritization via a Cost Function -- 4 Completeness -- 4.1 Recursive Auxiliaries -- 4.2 Pure Reasoning -- 5 Quality of Synthesized Programs -- 5.1 Performance -- 5.2 Readability -- 6 Applications -- 6.1 Program Repair -- 6.2 Data Migration and Serialization -- 6.3 Fine-Grained Concurrency -- References -- AI Verification -- DNNV: A Framework for Deep Neural Network Verification -- 1 Introduction -- 2 Background -- 3 DNNV Overview -- 3.1 Input Formats -- 3.2 Network Simplification -- 3.3 Property Reduction -- 3.4 Input and Output Translation -- 4 Implementation -- 4.1 Supporting Reuse and Extension -- 4.2 Usage -- 5 Study -- 6 Conclusion -- References -- Robustness Verification of Quantum Classifiers -- 1 Introduction -- 2 Quantum Data and Computation Models -- 3 Quantum Classification Algorithms -- 3.1 Basic Definitions -- 3.2 An Illustrative Example -- 4 Robustness -- 5 Robust Bound -- 6 Robustness Verification Algorithms -- 7 Evaluation -- 7.1 Quantum Bits Classification -- 7.2 Quantum Phase Recognition -- 7.3 Cluster Excitation Detection -- 7.4 The Classification of MNIST -- 7.5 Robustness Verification -- 8 Conclusion -- References -- BDD4BNN: A BDD-Based Quantitative Analysis Framework for Binarized Neural Networks
  • 1 Introduction -- 2 Preliminaries -- 2.1 Binarized Neural Networks -- 2.2 Binary Decision Diagrams -- 3 BDD4BNN Design -- 3.1 BDD4BNN Overview -- 3.2 CC2BDD: Cardinality Constraints to BDDs -- 3.3 Region2BDD: Input Regions to BDDs -- 3.4 BNN2CC: BNNs to Cardinality Constraints -- 3.5 BDD Model Builder -- 4 Applications: Robustness Analysis and Interpretability -- 4.1 Robustness Analysis -- 4.2 Interpretability -- 5 Evaluation -- 5.1 Performance of BDD Encoding -- 5.2 Robustness Analysis -- 5.3 Interpretability -- 6 Related Work -- 7 Conclusion -- References -- Automated Safety Verification of Programs Invoking Neural Networks -- 1 Introduction -- 2 Overview -- 3 Approach -- 3.1 Neuro-Aware Program Analysis -- 3.2 Neural-Network Analysis -- 4 Experimental Evaluation -- 4.1 Benchmarks -- 4.2 Implementation -- 4.3 Setup -- 4.4 Results -- 5 Related Work -- 6 Conclusion -- References -- Scalable Polyhedral Verification of Recurrent Neural Networks -- 1 Introduction -- 2 Related Work -- 3 Background -- 3.1 Threat Model -- 3.2 Long Short-Term Memory (LSTM) -- 3.3 Speech Preprocessing -- 3.4 Verification Using DeepPoly Abstract Domain -- 4 Overview of Prover -- 5 Scalable Certification of LSTMs -- 5.1 Computing Polyhedral Abstractions of LSTM Operations -- 5.2 Abstraction Refinement via Optimization -- 6 Certification of Speech Preprocessing -- 7 Experimental Evaluation -- 7.1 Speech Classification -- 7.2 Image Classification -- 7.3 Motion Sensor Data Classification -- 8 Conclusion -- References -- Verisig 2.0: Verification of Neural Network Controllers Using Taylor Model Preconditioning -- 1 Introduction -- 2 Problem Statement -- 3 Background: Neural Networks as Taylor Models -- 4 Taylor Model Preconditioning and Shrink Wrapping -- 4.1 Taylor Model Preconditioning -- 4.2 Shrink Wrapping -- 5 Implementation -- 6 Benchmarks -- 7 Experiments -- 8 Conclusion
  • 4.1 A Decidable Fragment of SL -- 4.2 SL Undecidability -- 5 SL Encodings of Smart Transitions -- 5.1 SL Encoding Using Implicit Balances and Sums -- 5.2 Completeness Relative to a Translation Function -- 5.3 SL Encodings Using Explicit Balances and Sums -- 6 Experiments -- 7 Related Work -- 8 Conclusions -- References -- Stateless Model Checking Under a Reads-Value-From Equivalence -- 1 Introduction -- 1.1 Motivating Example -- 1.2 Our Contributions -- 2 Preliminaries -- 2.1 Concurrent Model -- 2.2 Partial Orders -- 3 Reads-Value-From Equivalence -- 4 Verifying Sequential Consistency -- 4.1 Algorithm for VSC -- 4.2 Practical Heuristics for VerifySC in SMC -- 5 Stateless Model Checking -- 6 Experiments -- 7 Conclusions -- References -- Gobra: Modular Specification and Verification of Go Programs -- 1 Introduction -- 2 Gobra in a Nutshell -- 2.1 Basics -- 2.2 Interfaces -- 2.3 Concurrency -- 3 Encoding -- 4 Implementation and Evaluation -- 5 Related Work and Conclusion -- References -- Delay-Bounded Scheduling Without Delay! -- 1 Introduction -- 2 Delay-Bounded Scheduling -- 2.1 Basic Computational Model -- 2.2 Free and Round-Robin Scheduling -- 2.3 Delay-Bounded Round-Robin Scheduling -- 3 Abstract Closure for Delay-Bounded Analysis -- 3.1 Respectful Actions -- 3.2 From Delay-Bounded to Delay-Unbounded Analysis -- 4 Efficient Delay-Unbounded Analysis -- 5 DrUBA with Unbounded-Domain Variables -- 5.1 The Fixed-Thread Case -- 5.2 The Unbounded-Thread Case -- 6 Evaluation -- 6.1 Results -- 6.2 Unbounded-Thread Experiments -- 7 Discussion of Related Work -- 8 Conclusion -- References -- Checking Data-Race Freedom of GPU Kernels, Compositionally -- 1 Introduction -- 2 Overview -- 2.1 Challenges of GPU Programming -- 2.2 Memory Access Protocols by Example -- 3 Access Memory Protocols -- 4 DRF-Preserving Transformations of Protocols
  • 4.1 Aligning Protocols