De Novo Inverse Design Superhard C-N Compounds via Global Machine Learning Interatomic Potentials and Multiobjective Optimization Algorithm

A major challenge in the field of superhard materials is the identification of compounds with a hardness exceeding that of diamond. In this study, we developed a variable-composition inverse material design (VC-IMD) approach for designing C-N superhard materials. In this approach, an improved multio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters Jg. 16; H. 18; S. 4392
Hauptverfasser: Cheng, Guanjian, Yin, Wan-Jian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 08.05.2025
ISSN:1948-7185, 1948-7185
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A major challenge in the field of superhard materials is the identification of compounds with a hardness exceeding that of diamond. In this study, we developed a variable-composition inverse material design (VC-IMD) approach for designing C-N superhard materials. In this approach, an improved multiobjective optimization algorithm is introduced, utilizing structure similarity constraint to prevent convergence toward local minima. Combined with active learning, it trains global machine learning interatomic potentials ( -MLIPs) while exploring target materials. By comparing several -MLIPs and selecting the best, the resulting -MLIPs achieved reasonable precision within three iterations. Through multiple searches, 38 novel and stable C-N superhard materials not present in major computational materials databases were identified. Notably, the material C ( 6 22) with a hardness of 97.4 GPa was discovered, potentially exceeding that of diamond (94.0 GPa). This approach provided a new pathway for materials design with target properties.
AbstractList A major challenge in the field of superhard materials is the identification of compounds with a hardness exceeding that of diamond. In this study, we developed a variable-composition inverse material design (VC-IMD) approach for designing C-N superhard materials. In this approach, an improved multiobjective optimization algorithm is introduced, utilizing structure similarity constraint to prevent convergence toward local minima. Combined with active learning, it trains global machine learning interatomic potentials ( -MLIPs) while exploring target materials. By comparing several -MLIPs and selecting the best, the resulting -MLIPs achieved reasonable precision within three iterations. Through multiple searches, 38 novel and stable C-N superhard materials not present in major computational materials databases were identified. Notably, the material C ( 6 22) with a hardness of 97.4 GPa was discovered, potentially exceeding that of diamond (94.0 GPa). This approach provided a new pathway for materials design with target properties.
A major challenge in the field of superhard materials is the identification of compounds with a hardness exceeding that of diamond. In this study, we developed a variable-composition inverse material design (VC-IMD) approach for designing C-N superhard materials. In this approach, an improved multiobjective optimization algorithm is introduced, utilizing structure similarity constraint to prevent convergence toward local minima. Combined with active learning, it trains global machine learning interatomic potentials (g-MLIPs) while exploring target materials. By comparing several g-MLIPs and selecting the best, the resulting g-MLIPs achieved reasonable precision within three iterations. Through multiple searches, 38 novel and stable C-N superhard materials not present in major computational materials databases were identified. Notably, the material C3(P6422) with a hardness of 97.4 GPa was discovered, potentially exceeding that of diamond (94.0 GPa). This approach provided a new pathway for materials design with target properties.A major challenge in the field of superhard materials is the identification of compounds with a hardness exceeding that of diamond. In this study, we developed a variable-composition inverse material design (VC-IMD) approach for designing C-N superhard materials. In this approach, an improved multiobjective optimization algorithm is introduced, utilizing structure similarity constraint to prevent convergence toward local minima. Combined with active learning, it trains global machine learning interatomic potentials (g-MLIPs) while exploring target materials. By comparing several g-MLIPs and selecting the best, the resulting g-MLIPs achieved reasonable precision within three iterations. Through multiple searches, 38 novel and stable C-N superhard materials not present in major computational materials databases were identified. Notably, the material C3(P6422) with a hardness of 97.4 GPa was discovered, potentially exceeding that of diamond (94.0 GPa). This approach provided a new pathway for materials design with target properties.
Author Cheng, Guanjian
Yin, Wan-Jian
Author_xml – sequence: 1
  givenname: Guanjian
  surname: Cheng
  fullname: Cheng, Guanjian
  organization: Key Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China
– sequence: 2
  givenname: Wan-Jian
  orcidid: 0000-0003-0932-2789
  surname: Yin
  fullname: Yin, Wan-Jian
  organization: Hefei National Laboratory, Hefei 230088, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40273319$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLAzEcxINU7EM_gSA5etmaZJ85llZroQ9BPZds9r9tym6yJtkF_Qp-aRes4GmG4TdzmDEaaKMBoVtKppQw-iCkm54aWYH301gSQjN6gUaUR1mQ0iwe_PNDNHbuREjCSZZeoWFEWBqGlI_Q9wLw1nQGr3QH1gFegFMHjV_bBuxR2ALPgy2em7oxrS4c7pTAy8rkosIbIY9KA16DsFrpQz_hwQpvaiXxi_GgvRKVw0IXeNNWXpn8BNKrDvCu8apWX6LPNJ5VB2OVP9bX6LLsC3Bz1gl6f3p8mz8H691yNZ-tA8F46oO85JTERSg48IRHcRaSMo3LhHEZQp4xGZUyLCXjWZ5xAVAA6_E8kTlNe6pkE3T_u9tY89GC8_taOQlVJTSY1u37Y6IkZiRhPXp3Rtu8hmLfWFUL-7n_O5D9AKWbeZk
ContentType Journal Article
DBID NPM
7X8
DOI 10.1021/acs.jpclett.5c00181
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1948-7185
ExternalDocumentID 40273319
Genre Journal Article
GroupedDBID 53G
55A
5VS
7~N
AABXI
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
DU5
EBS
ED~
GGK
GNL
IH9
JG~
NPM
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
7X8
ID FETCH-LOGICAL-a297t-bf9105d3a9e96945830f75f629c3eb82c4fc3fc298b89aeede205db6cb17f62f2
IEDL.DBID 7X8
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001474268000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1948-7185
IngestDate Wed Jul 02 04:50:06 EDT 2025
Mon Jul 21 06:07:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a297t-bf9105d3a9e96945830f75f629c3eb82c4fc3fc298b89aeede205db6cb17f62f2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0932-2789
PMID 40273319
PQID 3194652062
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3194652062
pubmed_primary_40273319
PublicationCentury 2000
PublicationDate 2025-05-08
PublicationDateYYYYMMDD 2025-05-08
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry letters
PublicationTitleAlternate J Phys Chem Lett
PublicationYear 2025
SSID ssj0069087
Score 2.4579933
Snippet A major challenge in the field of superhard materials is the identification of compounds with a hardness exceeding that of diamond. In this study, we developed...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 4392
Title De Novo Inverse Design Superhard C-N Compounds via Global Machine Learning Interatomic Potentials and Multiobjective Optimization Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/40273319
https://www.proquest.com/docview/3194652062
Volume 16
WOSCitedRecordID wos001474268000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbagtReoKXl3WqQuAYS52WfKrSAuJCuBEh7W9mODbtik-0m7J_gTzPjZOFUCamXnMaRNR7Pw_P4GDvO0tJKx6PAUYVrYlQZ6NJEFPOIJNFCmDL0YBN5UYjRSA77B7emL6tc6USvqMva0Bv5KYpKkqU8zPjv-d-AUKMou9pDaHxkazG6MnQx89FrFgEDPw-QhytFgDo4XU0d4tGpMs3JdI4n07YnqSFouujfPqa3NZeb_7vLr2yj9zLhrBOLb-yDrbbY58EK3O07ez63UNTLGmjOxqKxcO4rOeDmaW4X1IgFg6AAUhYEu9TAcqKggweAa19-aaGfzHoP_lERY_fZxMCwbqn8CGUaVFWCb--t9bTTqvAH9dOsb_yEs8d73Hn7MPvB7i4vbgdXQY_LECgu8zbQDn2MtIyVtDKTlHgNXZ66jEsTWy24SZyJneFSaCEVGmHLkVxnRkc5Ujm-zT5VdWV3GeQqTDRHnzK3YeIEGo4M_2VCZWluT5ztsaMVn8fIIUpmqMrWT834jdN7bKc7rPG8G9AxTmhIDxLsv2P1AfvCCdKXahjFIVtzyCH7k62bZTtpFr-8QOG3GF6_APok2RI
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De+Novo+Inverse+Design+Superhard+C-N+Compounds+via+Global+Machine+Learning+Interatomic+Potentials+and+Multiobjective+Optimization+Algorithm&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Cheng%2C+Guanjian&rft.au=Yin%2C+Wan-Jian&rft.date=2025-05-08&rft.eissn=1948-7185&rft.volume=16&rft.issue=18&rft.spage=4392&rft_id=info:doi/10.1021%2Facs.jpclett.5c00181&rft_id=info%3Apmid%2F40273319&rft_id=info%3Apmid%2F40273319&rft.externalDocID=40273319
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon