When Single Event Upset Meets Deep Neural Networks: Observations, Explorations, and Remedies

Deep Neural Network has proved its potential in various perception tasks and hence become an appealing option for interpretation and data processing in security sensitive systems. However, security-sensitive systems demand not only high perception performance, but also design robustness under variou...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the ASP-DAC ... Asia and South Pacific Design Automation Conference s. 163 - 168
Hlavní autoři: Yan, Zheyu, Shi, Yiyu, Liao, Wang, Hashimoto, Masanori, Zhou, Xichuan, Zhuo, Cheng
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.01.2020
Témata:
ISSN:2153-697X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Deep Neural Network has proved its potential in various perception tasks and hence become an appealing option for interpretation and data processing in security sensitive systems. However, security-sensitive systems demand not only high perception performance, but also design robustness under various circumstances. Unlike prior works that study network robustness from software level, we investigate from hardware perspective about the impact of Single Event Upset (SEU) induced parameter perturbation (SIPP) on neural networks. We systematically define the fault models of SEU and then provide the definition of sensitivity to SIPP as the robustness measure for the network. We are then able to analytically explore the weakness of a network and summarize the key findings for the impact of SIPP on different types of bits in a floating point parameter, layer-wise robustness within the same network and impact of network depth. Based on those findings, we propose two remedy solutions to protect DNNs from SIPPs, which can mitigate accuracy degradation from 28% to 0.27% for ResNet with merely 0.24-bit SRAM area overhead per parameter.
AbstractList Deep Neural Network has proved its potential in various perception tasks and hence become an appealing option for interpretation and data processing in security sensitive systems. However, security-sensitive systems demand not only high perception performance, but also design robustness under various circumstances. Unlike prior works that study network robustness from software level, we investigate from hardware perspective about the impact of Single Event Upset (SEU) induced parameter perturbation (SIPP) on neural networks. We systematically define the fault models of SEU and then provide the definition of sensitivity to SIPP as the robustness measure for the network. We are then able to analytically explore the weakness of a network and summarize the key findings for the impact of SIPP on different types of bits in a floating point parameter, layer-wise robustness within the same network and impact of network depth. Based on those findings, we propose two remedy solutions to protect DNNs from SIPPs, which can mitigate accuracy degradation from 28% to 0.27% for ResNet with merely 0.24-bit SRAM area overhead per parameter.
Author Zhuo, Cheng
Hashimoto, Masanori
Yan, Zheyu
Shi, Yiyu
Liao, Wang
Zhou, Xichuan
Author_xml – sequence: 1
  givenname: Zheyu
  surname: Yan
  fullname: Yan, Zheyu
  organization: Zhejiang University
– sequence: 2
  givenname: Yiyu
  surname: Shi
  fullname: Shi, Yiyu
  organization: University of Notre Dame
– sequence: 3
  givenname: Wang
  surname: Liao
  fullname: Liao, Wang
  organization: Osaka University
– sequence: 4
  givenname: Masanori
  surname: Hashimoto
  fullname: Hashimoto, Masanori
  organization: Osaka University
– sequence: 5
  givenname: Xichuan
  surname: Zhou
  fullname: Zhou, Xichuan
  organization: Chongqing University
– sequence: 6
  givenname: Cheng
  surname: Zhuo
  fullname: Zhuo, Cheng
  organization: Zhejiang University
BookMark eNo1kM1OwkAYRUejiYA8gZtxb_Gbv07HXQP4k6AYkejChEynX7Vapk2nor69JOLZnJzNXdw-OfC1R0JOGYwYA3OeLu6jSTqWWqt4xIHDyIBUTMg90meaJ0wyLmCf9DhTIoqNfj4iwxDeYYsCrhn0yMvTG3q6KP1rhXS6Qd_RZROwo7eIXaATxIbe4Wdrq626r7r9CBd0ngVsN7Yrax_O6PS7qer2v6zP6QOuMS8xHJPDwlYBhzsPyPJy-ji-jmbzq5txOossN6qLXMwLB5lBFxdCCSNMkRmtQHKRQxwnoE3hEJV2RlruUABYqV1iTQKFM7kYkJO_3RIRV01brm37s9qdIX4BjMhWug
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ASP-DAC47756.2020.9045134
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 1728141230
9781728141237
EISSN 2153-697X
EndPage 168
ExternalDocumentID 9045134
Genre orig-research
GroupedDBID 5VS
6IE
6IF
6IL
6IN
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
APO
AVWKF
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
I07
IEGSK
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-a295t-c62fc0b9ec6f353939fb9750423d0668079fcee57c94a2ce300a47c8a980fc9d3
IEDL.DBID RIE
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001235809500032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 05:55:37 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a295t-c62fc0b9ec6f353939fb9750423d0668079fcee57c94a2ce300a47c8a980fc9d3
PageCount 6
ParticipantIDs ieee_primary_9045134
PublicationCentury 2000
PublicationDate 2020-Jan.
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-Jan.
PublicationDecade 2020
PublicationTitle Proceedings of the ASP-DAC ... Asia and South Pacific Design Automation Conference
PublicationTitleAbbrev ASP-DAC
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000502710
ssib055574204
Score 1.9843811
Snippet Deep Neural Network has proved its potential in various perception tasks and hence become an appealing option for interpretation and data processing in...
SourceID ieee
SourceType Publisher
StartPage 163
SubjectTerms Hardware
Neural networks
Robustness
Sensitivity
Single event upsets
Software
Task analysis
Title When Single Event Upset Meets Deep Neural Networks: Observations, Explorations, and Remedies
URI https://ieeexplore.ieee.org/document/9045134
WOSCitedRecordID wos001235809500032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4BYoxeUMD4OzXxyKC067p6IwjxIhKRhIMJ6bq3xIQMwoZ_v-s2UBMvnvrjsKyv3drv9XvfA7h3AxpEGqWjez46FkA4WnPhGBYEoVEBVaHOk03I8difz9WkAu19LAwi5uQz7NhqfpcfrszWusq6yoqhcLcKVSm9IlZrt3aEEBnIK6FFoeudAa4ePYS7Ulaz259OnMf-wJVSWG4Co53yeb8Sq-T7yqj-vzc6gdZ3gB6Z7LeeU6hg3ID6LkMDKT_YBhz_kBtswnv2543JNKsvkQwt0ZHM1gmm5BkxTcgj4ppYsQ69zIqcHZ48kJdg77dN2qSg7O1aOg7JK9rreUxaMBsN3wZPTpldwdFMidQxHosMDRQaL-KCK66iQFmxd8bD7BziU6mibBhCGuVqZpBTql1pfK18GhkV8jOoxasYz4H4LDSeQCZ1huak5r6IVCS5YVbPTVJ1AU1rusW6ENBYlFa7_Lv7Co7s7BR-jmuopZst3sCB-Uw_ks1tPutf29ar4Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFD5RNF5eUMF4tyY-MqjtSlffDGIwIhKBhAcT0nVniYkZhA1_v-s2UBNffOrlYVkvW_ud853vAFy7PvVDjdLRNx46FkA4WnPhGOb7gVE-VYHOkk3IXs8bj1V_DWqrWBhEzMhnWLfVzJcfTM3CmsoayoqhcHcdNoTrMppHay13jxAihXkFuMiVvVPIdUO34KoQ1mzcDfrO_V3LlVJYdgKj9eKJv1KrZCfLQ_l_77QH1e8QPdJfHT77sIbRAZSXORpI8ckewO4PwcEKvKX_3ogM0voHkralOpLRLMaEPCMmMblHnBEr16E_0iLjh8e35MVfWW7jGslJe8uWjgLyitZBj3EVRg_tYavjFPkVHM2USBzTZKGhvkLTDLngiqvQV1bunfEgvYl4VKowHYaQRrmaGeSUalcaTyuPhkYF_BBK0TTCIyAeC0xTIJM6xXNSc0-EKpTcMKvoJqk6hoqdusksl9CYFLN28nf3JWx3hs_dSfex93QKO3alcqvHGZSS-QLPYdN8Ju_x_CLbAV_9ia8o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+ASP-DAC+...+Asia+and+South+Pacific+Design+Automation+Conference&rft.atitle=When+Single+Event+Upset+Meets+Deep+Neural+Networks%3A+Observations%2C+Explorations%2C+and+Remedies&rft.au=Yan%2C+Zheyu&rft.au=Shi%2C+Yiyu&rft.au=Liao%2C+Wang&rft.au=Hashimoto%2C+Masanori&rft.date=2020-01-01&rft.pub=IEEE&rft.eissn=2153-697X&rft.spage=163&rft.epage=168&rft_id=info:doi/10.1109%2FASP-DAC47756.2020.9045134&rft.externalDocID=9045134