Dimensions of Affine Deligne–Lusztig Varieties: A New Approach via Labeled Folded Alcove Walks and Root Operators

Let $G$ be a reductive group over the field $F=k((t))$, where $k$ is an algebraic closure of a finite field, and let $W$ be the (extended) affine Weyl group of $G$. The associated affine Deligne-Lusztig varieties $X_x(b)$, which are indexed by elements $b \in G(F)$ and $x \in W$, were introduced by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Milićević, Elizabeth, Schwer, Petra, Thomas, Anne
Format: E-Book Buch
Sprache:Englisch
Veröffentlicht: Providence, Rhode Island American Mathematical Society 2019
Schriftenreihe:Memoirs of the American Mathematical Society
ISBN:9781470436766, 1470436760
ISSN:0065-9266, 1947-6221
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Inhaltsangabe:
  • Introduction -- Preliminaries on Weyl groups, affine buildings, and related notions -- Labelings and orientations, galleries, and alcove walks -- Dimensions of galleries and root operators -- Affine Deligne–Lusztig varieties and folded galleries -- Explicit constructions of positively folded galleries -- The varieties <inline-formula content-type="math/mathml"> X x ( 1 ) X_x(1) </inline-formula> in the shrunken dominant Weyl chamber -- The varieties <inline-formula content-type="math/mathml"> X x ( 1 ) X_x(1) </inline-formula> and <inline-formula content-type="math/mathml"> X x ( b ) X_x(b) </inline-formula> -- Conjugating to other Weyl chambers -- Diagram automorphisms -- Applications to affine Hecke algebras and affine reflection length