Hodge Ideals
We use methods from birational geometry to study the Hodge filtration on the localization along a hypersurface. This filtration leads to a sequence of ideal sheaves, called Hodge ideals, the first of which is a multiplier ideal. We analyze their local and global properties, and use them for applicat...
Uloženo v:
| Hlavní autoři: | , |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | angličtina |
| Vydáno: |
Providence, Rhode Island
American Mathematical Society
2019
|
| Vydání: | 1 |
| Edice: | Memoirs of the American Mathematical Society |
| Témata: | |
| ISBN: | 1470437813, 9781470437817 |
| ISSN: | 0065-9266, 1947-6221 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We use methods from birational geometry to study the Hodge filtration on the localization along a hypersurface. This filtration leads
to a sequence of ideal sheaves, called Hodge ideals, the first of which is a multiplier ideal. We analyze their local and global
properties, and use them for applications related to the singularities and Hodge theory of hypersurfaces and their complements. |
|---|---|
| Bibliografie: | Includes bibliographical reference (p. 79-80) November 2019, volume 262, number 1268 (fifth of 7 numbers) |
| ISBN: | 1470437813 9781470437817 |
| ISSN: | 0065-9266 1947-6221 |
| DOI: | 10.1090/memo/1268 |

