Psi4NumPy: An Interactive Quantum Chemistry Programming Environment for Reference Implementations and Rapid Development

Psi4NumPy demonstrates the use of efficient computational kernels from the open-source Psi4 program through the popular NumPy library for linear algebra in Python to facilitate the rapid development of clear, understandable Python computer code for new quantum chemical methods, while maintaining a r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of chemical theory and computation Ročník 14; číslo 7; s. 3504
Hlavní autoři: Smith, Daniel G A, Burns, Lori A, Sirianni, Dominic A, Nascimento, Daniel R, Kumar, Ashutosh, James, Andrew M, Schriber, Jeffrey B, Zhang, Tianyuan, Zhang, Boyi, Abbott, Adam S, Berquist, Eric J, Lechner, Marvin H, Cunha, Leonardo A, Heide, Alexander G, Waldrop, Jonathan M, Takeshita, Tyler Y, Alenaizan, Asem, Neuhauser, Daniel, King, Rollin A, Simmonett, Andrew C, Turney, Justin M, Schaefer, Henry F, Evangelista, Francesco A, DePrince, A Eugene, Crawford, T Daniel, Patkowski, Konrad, Sherrill, C David
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 10.07.2018
ISSN:1549-9626, 1549-9626
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Psi4NumPy demonstrates the use of efficient computational kernels from the open-source Psi4 program through the popular NumPy library for linear algebra in Python to facilitate the rapid development of clear, understandable Python computer code for new quantum chemical methods, while maintaining a relatively low execution time. Using these tools, reference implementations have been created for a number of methods, including self-consistent field (SCF), SCF response, many-body perturbation theory, coupled-cluster theory, configuration interaction, and symmetry-adapted perturbation theory. Furthermore, several reference codes have been integrated into Jupyter notebooks, allowing background, underlying theory, and formula information to be associated with the implementation. Psi4NumPy tools and associated reference implementations can lower the barrier for future development of quantum chemistry methods. These implementations also demonstrate the power of the hybrid C++/Python programming approach employed by the Psi4 program.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1549-9626
1549-9626
DOI:10.1021/acs.jctc.8b00286