Reduced Density Matrix Cumulants: The Combinatorics of Size-Consistency and Generalized Normal Ordering

Reduced density matrix cumulants play key roles in the theory of both reduced density matrices and multiconfigurational normal ordering. We present a new, simpler generating function for reduced density matrix cumulants that is formally identical with equating the coupled cluster and configuration i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical theory and computation Vol. 16; no. 10; p. 6150
Main Authors: Misiewicz, Jonathon P, Turney, Justin M, Schaefer, Henry F
Format: Journal Article
Language:English
Published: 13.10.2020
ISSN:1549-9626, 1549-9626
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reduced density matrix cumulants play key roles in the theory of both reduced density matrices and multiconfigurational normal ordering. We present a new, simpler generating function for reduced density matrix cumulants that is formally identical with equating the coupled cluster and configuration interaction ansätze. This is shown to be a general mechanism to convert between a multiplicatively separable quantity and an additively separable quantity, as defined by a set of axioms. It is shown that both the cumulants of probability theory and the reduced density matrices are entirely combinatorial constructions, where the differences can be associated with changes in the notion of "multiplicative separability" for expectation values of random variables compared to reduced density matrices. We compare our generating function to that of previous works and criticize previous claims of probabilistic significance of the reduced density matrix cumulants. Finally, we present a simple proof of the generalized normal ordering formalism to explore the role of reduced density matrix cumulants therein. While the formalism can be used without cumulants, the combinatorial structure of expressing RDMs in terms of cumulants is the same combinatorial structure on cumulants that allows for a simple extended generalized Wick's theorem.Reduced density matrix cumulants play key roles in the theory of both reduced density matrices and multiconfigurational normal ordering. We present a new, simpler generating function for reduced density matrix cumulants that is formally identical with equating the coupled cluster and configuration interaction ansätze. This is shown to be a general mechanism to convert between a multiplicatively separable quantity and an additively separable quantity, as defined by a set of axioms. It is shown that both the cumulants of probability theory and the reduced density matrices are entirely combinatorial constructions, where the differences can be associated with changes in the notion of "multiplicative separability" for expectation values of random variables compared to reduced density matrices. We compare our generating function to that of previous works and criticize previous claims of probabilistic significance of the reduced density matrix cumulants. Finally, we present a simple proof of the generalized normal ordering formalism to explore the role of reduced density matrix cumulants therein. While the formalism can be used without cumulants, the combinatorial structure of expressing RDMs in terms of cumulants is the same combinatorial structure on cumulants that allows for a simple extended generalized Wick's theorem.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1549-9626
1549-9626
DOI:10.1021/acs.jctc.0c00422