Local divergence-free immersed finite element-difference method using composite B-splines

In the class of immersed boundary (IB) methods, the choice of the regularized delta function plays a crucial role in transferring information between fluid and solid domains through interpolation and spreading operators. Most prior work using the IB method has used isotropic kernels that do not pres...

Full description

Saved in:
Bibliographic Details
Published in:Advances in Computational Science and Engineering Vol. 4; pp. 16 - 56
Main Authors: Li, Lianxia, Gruninger, Cole, Lee, Jae H., Griffith, Boyce E.
Format: Journal Article
Language:English
Published: United States 01.06.2025
Subjects:
ISSN:2837-1739, 2837-1739
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the class of immersed boundary (IB) methods, the choice of the regularized delta function plays a crucial role in transferring information between fluid and solid domains through interpolation and spreading operators. Most prior work using the IB method has used isotropic kernels that do not preserve the divergence-free condition of the velocity field, leading to loss of incompressibility of the solid when interpolating the Eulerian velocity to Lagrangian markers. One approach to addressing this issue in IB simulations involving large deformations of immersed incompressible elastic structures is to use a volumetric stabilization approach, such as adding a volumetric energy term and using modified invariants in the structure's constitutive model. Composite B-spline (CBS) kernels offer an alternative approach by inherently maintaining the discrete divergence-free property. This work evaluates the performance of CBS kernels in terms of their volume conservation and accuracy, comparing them with several traditional isotropic kernel functions using a construction introduced by Peskin (referred to as IB kernels) and B-spline (BS) kernels. Benchmark tests include pressure-loaded and shear-dominated flows, such as an elastic band under differential pressure loads, a pressurized membrane, a compressed block, Cook's membrane, a slanted channel flow, and a modified Turek-Hron problem. Additionally, we validate our methodology using a complex fluid-structure interaction model of bioprosthetic heart valve dynamics in a pulse duplicator. Results demonstrate that CBS kernels achieve superior volume conservation compared to conventional isotropic kernels, eliminating the need for additional volumetric stabilization techniques typically required to address instabilities arising from volume conservation errors. Further, it is common that the accuracy provided by CBS kernels on coarser grids is comparable to that provided by IB and BS kernels on finer grids. Unlike IB and BS kernels, which perform better with larger mesh ratio factors between solid and fluid grids, CBS kernels show improved results with smaller mesh ratio factors. Additionally, the study reveals that although wider kernels provide more accurate results across all methods, CBS kernels are less sensitive to variations in relative grid spacings than isotropic kernels. This study highlights the advantages of CBS kernels in achieving stable, accurate, and efficient FSI simulations without requiring specialized volumetric stabilization treatments when simulating large deformations of elastic solids immersed in fluid.
AbstractList In the class of immersed boundary (IB) methods, the choice of the regularized delta function plays a crucial role in transferring information between fluid and solid domains through interpolation and spreading operators. Most prior work using the IB method has used isotropic kernels that do not preserve the divergence-free condition of the velocity field, leading to loss of incompressibility of the solid when interpolating the Eulerian velocity to Lagrangian markers. One approach to addressing this issue in IB simulations involving large deformations of immersed incompressible elastic structures is to use a volumetric stabilization approach, such as adding a volumetric energy term and using modified invariants in the structure's constitutive model. Composite B-spline (CBS) kernels offer an alternative approach by inherently maintaining the discrete divergence-free property. This work evaluates the performance of CBS kernels in terms of their volume conservation and accuracy, comparing them with several traditional isotropic kernel functions using a construction introduced by Peskin (referred to as IB kernels) and B-spline (BS) kernels. Benchmark tests include pressure-loaded and shear-dominated flows, such as an elastic band under differential pressure loads, a pressurized membrane, a compressed block, Cook's membrane, a slanted channel flow, and a modified Turek-Hron problem. Additionally, we validate our methodology using a complex fluid-structure interaction model of bioprosthetic heart valve dynamics in a pulse duplicator. Results demonstrate that CBS kernels achieve superior volume conservation compared to conventional isotropic kernels, eliminating the need for additional volumetric stabilization techniques typically required to address instabilities arising from volume conservation errors. Further, it is common that the accuracy provided by CBS kernels on coarser grids is comparable to that provided by IB and BS kernels on finer grids. Unlike IB and BS kernels, which perform better with larger mesh ratio factors between solid and fluid grids, CBS kernels show improved results with smaller mesh ratio factors. Additionally, the study reveals that although wider kernels provide more accurate results across all methods, CBS kernels are less sensitive to variations in relative grid spacings than isotropic kernels. This study highlights the advantages of CBS kernels in achieving stable, accurate, and efficient FSI simulations without requiring specialized volumetric stabilization treatments when simulating large deformations of elastic solids immersed in fluid.
In the class of immersed boundary (IB) methods, the choice of the regularized delta function plays a crucial role in transferring information between fluid and solid domains through interpolation and spreading operators. Most prior work using the IB method has used isotropic kernels that do not preserve the divergence-free condition of the velocity field, leading to loss of incompressibility of the solid when interpolating the Eulerian velocity to Lagrangian markers. One approach to addressing this issue in IB simulations involving large deformations of immersed incompressible elastic structures is to use a volumetric stabilization approach, such as adding a volumetric energy term and using modified invariants in the structure's constitutive model. Composite B-spline (CBS) kernels offer an alternative approach by inherently maintaining the discrete divergence-free property. This work evaluates the performance of CBS kernels in terms of their volume conservation and accuracy, comparing them with several traditional isotropic kernel functions using a construction introduced by Peskin (referred to as IB kernels) and B-spline (BS) kernels. Benchmark tests include pressure-loaded and shear-dominated flows, such as an elastic band under differential pressure loads, a pressurized membrane, a compressed block, Cook's membrane, a slanted channel flow, and a modified Turek-Hron problem. Additionally, we validate our methodology using a complex fluid-structure interaction model of bioprosthetic heart valve dynamics in a pulse duplicator. Results demonstrate that CBS kernels achieve superior volume conservation compared to conventional isotropic kernels, eliminating the need for additional volumetric stabilization techniques typically required to address instabilities arising from volume conservation errors. Further, it is common that the accuracy provided by CBS kernels on coarser grids is comparable to that provided by IB and BS kernels on finer grids. Unlike IB and BS kernels, which perform better with larger mesh ratio factors between solid and fluid grids, CBS kernels show improved results with smaller mesh ratio factors. Additionally, the study reveals that although wider kernels provide more accurate results across all methods, CBS kernels are less sensitive to variations in relative grid spacings than isotropic kernels. This study highlights the advantages of CBS kernels in achieving stable, accurate, and efficient FSI simulations without requiring specialized volumetric stabilization treatments when simulating large deformations of elastic solids immersed in fluid.In the class of immersed boundary (IB) methods, the choice of the regularized delta function plays a crucial role in transferring information between fluid and solid domains through interpolation and spreading operators. Most prior work using the IB method has used isotropic kernels that do not preserve the divergence-free condition of the velocity field, leading to loss of incompressibility of the solid when interpolating the Eulerian velocity to Lagrangian markers. One approach to addressing this issue in IB simulations involving large deformations of immersed incompressible elastic structures is to use a volumetric stabilization approach, such as adding a volumetric energy term and using modified invariants in the structure's constitutive model. Composite B-spline (CBS) kernels offer an alternative approach by inherently maintaining the discrete divergence-free property. This work evaluates the performance of CBS kernels in terms of their volume conservation and accuracy, comparing them with several traditional isotropic kernel functions using a construction introduced by Peskin (referred to as IB kernels) and B-spline (BS) kernels. Benchmark tests include pressure-loaded and shear-dominated flows, such as an elastic band under differential pressure loads, a pressurized membrane, a compressed block, Cook's membrane, a slanted channel flow, and a modified Turek-Hron problem. Additionally, we validate our methodology using a complex fluid-structure interaction model of bioprosthetic heart valve dynamics in a pulse duplicator. Results demonstrate that CBS kernels achieve superior volume conservation compared to conventional isotropic kernels, eliminating the need for additional volumetric stabilization techniques typically required to address instabilities arising from volume conservation errors. Further, it is common that the accuracy provided by CBS kernels on coarser grids is comparable to that provided by IB and BS kernels on finer grids. Unlike IB and BS kernels, which perform better with larger mesh ratio factors between solid and fluid grids, CBS kernels show improved results with smaller mesh ratio factors. Additionally, the study reveals that although wider kernels provide more accurate results across all methods, CBS kernels are less sensitive to variations in relative grid spacings than isotropic kernels. This study highlights the advantages of CBS kernels in achieving stable, accurate, and efficient FSI simulations without requiring specialized volumetric stabilization treatments when simulating large deformations of elastic solids immersed in fluid.
Author Li, Lianxia
Gruninger, Cole
Lee, Jae H.
Griffith, Boyce E.
AuthorAffiliation 4 Computational Medicine Program, University of North Carolina School of Medicine, Chapel Hill, NC, USA
2 Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
5 McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, USA
1 Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA
3 Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina, Chapel Hill, NC, USA
AuthorAffiliation_xml – name: 3 Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina, Chapel Hill, NC, USA
– name: 2 Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
– name: 1 Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA
– name: 4 Computational Medicine Program, University of North Carolina School of Medicine, Chapel Hill, NC, USA
– name: 5 McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, USA
Author_xml – sequence: 1
  givenname: Lianxia
  surname: Li
  fullname: Li, Lianxia
  email: llianxia@unc.edu
  organization: Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA
– sequence: 2
  givenname: Cole
  surname: Gruninger
  fullname: Gruninger, Cole
  email: coleco@live.unc.edu
  organization: Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA
– sequence: 3
  givenname: Jae H.
  surname: Lee
  fullname: Lee, Jae H.
  email: jaeholee@live.unc.edu
  organization: Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA
– sequence: 4
  givenname: Boyce E.
  surname: Griffith
  fullname: Griffith, Boyce E.
  email: boyceg@email.unc.edu
  organization: Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40842861$$D View this record in MEDLINE/PubMed
BookMark eNptkc1rGzEQxUVJaRw3t57DHlPIuvrYlbSnkISkLRh6SQ49Ca00chRWkiN5Df3vu8ZucKCnGZgf7w3vnaGTmCIg9IXgBetY802bAguKaYsJ-YBmVDJRE8G6k6P9FJ2X4nvcsqYTkstP6LTBsqGSkxn6vUxGD5X1W8griAZqlwEqHwLkArZyPvoNVDBAgLiprXcO8o6rAmyek63G4uOqMimsU9mRt3VZDz5C-Yw-Oj0UOD_MOXp6uH-8-1Evf33_eXezrDXtGKmJ6RvowDLTM-50K5veWem0tJS3RFrOhNPQNwIDxqQFTrGwvaRMcONEL9gcXe9112MfwJrpzawHtc4-6PxHJe3V-0v0z2qVtopQxlsuu0nh8qCQ0-sIZaOCLwaGQUdIY1GMNpxN8Yl2Qi-Ozd5c_gU6AVd7wORUSgb3hhCsdpWpXWXqUNmEf93j2oeiXtKY45TV_9m_SjeYYA
Cites_doi 10.1371/journal.pbio.1002123
10.1137/S1064827502414060
10.1016/j.jcp.2016.04.024
10.1007/s00366-006-0049-3
10.1016/j.jcp.2018.07.020
10.1006/jcph.1999.6293
10.1016/j.jtbi.2015.07.035
10.1017/jfm.2013.434
10.1017/jfm.2017.3
10.1016/0021-9991(72)90065-4
10.1016/j.jcp.2022.111890
10.1063/1.1761178
10.1016/j.cma.2020.112978
10.1016/j.cma.2003.12.044
10.1016/j.jcp.2022.111500
10.1016/j.jcp.2006.08.019
10.1016/0021-9991(84)90143-8
10.1142/S1758825109000113
10.1016/j.jcp.2013.08.043
10.1002/cnm.2888
10.1016/j.jcp.2017.06.041
10.1017/jfm.2011.54
10.1002/cpe.652
10.1016/j.cma.2003.12.024
10.1016/j.jcp.2024.112831
10.1016/j.jcp.2009.07.001
10.1002/cnm.3240
10.1016/j.cma.2016.07.028
10.1002/fld.1650200824
10.4208/cicp.120111.300911s
10.1090/qam/16705
10.1142/S0218202512500583
10.1016/j.cma.2007.09.015
10.1016/j.jcp.2007.02.023
10.1016/j.jcp.2024.112888
10.1006/jcph.2000.6502
10.1109/18.119742
10.1098/rsif.2005.0073
10.1016/j.jcp.2020.109872
10.1016/j.jcp.2012.02.020
10.1006/jcph.1993.1051
10.1017/S0962492902000077
10.1016/j.jcp.2022.111042
10.1039/tf9615700829
10.1007/s10439-020-02466-4
10.1371/journal.pone.0179727
10.1002/cnm.1445
10.1093/imanum/4.4.491
10.3390/fluids3030045
10.1016/j.zool.2013.10.011
10.1142/S0218202513500139
10.1007/3-540-34596-5_15
10.1016/j.jbiomech.2016.03.009
10.1007/978-1-4612-1986-6_8
10.1007/978-1-4612-6333-3
10.1093/pnasnexus/pgae392
10.1002/9780470558027.ch7
10.1137/1.9781611970555
10.2172/2337606
10.1007/BFb0064470
ContentType Journal Article
DBID RAN
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.3934/acse.2025011
DatabaseName American Institute of Mathematical Sciences
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2837-1739
EndPage 56
ExternalDocumentID PMC12365689
40842861
10_3934_acse_2025011
Genre Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: U01 HL143336
– fundername: NIDDK NIH HHS
  grantid: R01 DK132328
– fundername: NHLBI NIH HHS
  grantid: R01 HL157631
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
ARCSS
RAN
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-a2931-1cb4e9ed3cb36fa584bfd8fa8d26518d637faeb470e0015e6207db82376cf7b73
ISSN 2837-1739
IngestDate Sat Aug 23 05:21:50 EDT 2025
Sat Nov 01 13:57:26 EDT 2025
Thu Sep 04 05:01:49 EDT 2025
Sat Nov 29 08:02:13 EST 2025
Tue Jul 15 09:10:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords isotropic kernel
fluid-structure interaction
immersed finite element-finite difference method
volume conservation
Immersed boundary
composite B-spline kernels (CBS)
volumetric stabilization
Secondary: 53C35
Primary: 58F15, 58F17
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a2931-1cb4e9ed3cb36fa584bfd8fa8d26518d637faeb470e0015e6207db82376cf7b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.aimsciences.org/data/article/export-pdf?id=67fcd90c55a5ae148e358355
PMID 40842861
PQID 3246305375
PQPubID 23479
PageCount 41
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12365689
proquest_miscellaneous_3246305375
pubmed_primary_40842861
crossref_primary_10_3934_acse_2025011
aims_journals_10_3934_acse_2025011
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Advances in Computational Science and Engineering
PublicationTitleAbbrev ACSE
PublicationTitleAlternate Adv Comput Sci Eng
PublicationYear 2025
References Jones Laurenza Hedrick Griffith Miller (38) 2015; 384
Lee Rygg Kolahdouz Rossi Retta Duraiswamy Scotten Craven Griffith (43) 2020; 48
Santhanakrishnan Jones Dickson Peek Kasoju Dickinson Miller (54) 2018; 3
Bale Neveln Bhalla MacIver Patankar (5) 2015; 13
Kirk Peterson Stogner Carey (41) 2006; 22
Casquero Zhang Bona-Casas Dalcin Gomez (12) 2018; 374
Zhang Gerstenberger Wang Liu (64) 2004; 193
Handscomb (33) 1984; 4
M. Davey, C. Puelz, S. Rossi, M. A. Smith, D. R. Wells, G. M. Sturgeon, W. P. Segars, J. P. Vavalle, C. S. Peskin and B. E. Griffith, Simulating cardiac fluid dynamics in the human heart, PNAS Nexus, 3 (2024), pgae392.
Wells Vadala-Roth Lee Griffith (63) 2023; 477
Wang Liu (62) 2004; 193
Flory (22) 1961; 57
Tytell Hsu Fauci (59) 2014; 117
Evans Hughes (20) 2013; 23
Peskin (47) 1972; 10
Lee Griffith (42) 2022; 457
S. Balay, W. D. Gropp, L. C. McInnes and B. F. Smith, Efficient management of parallelism in object oriented numerical software libraries, in Modern Software Tools in Scientific Computing, Birkhäuser Press, (1997), 163-202.
P. A. Raviart and J. M. Thomas, A mixed finite element method for second-order elliptic problems, in Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 606 (1977), 292-315.
Gruninger Barrett Fang Forest Griffith (31) 2024; 506
Rider Greenough Kamm (51) 2007; 225
Roma Peskin Berger (52) 1999; 153
Hoover Griffith Miller (36) 2017; 813
B. E. Griffith, R. D. Hornung, D. M. McQueen and C. S. Peskin, Parallel and adaptive simulation of cardiac fluid dynamics, in Advanced Computational Infrastructures for Parallel and Distributed Adaptive Applications, (2009), 105-130.
Liu Jun Zhang (45) 1995; 20
Colella Woodward (14) 1984; 54
S. Balay, S. Abhyankar, M.F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E. M. Constantinescu, L. o Dalcin, A. Dener, V. Eijkhout, J. Faibussowitsch, W. D. Gropp, V. Hapla, T. Isaac, P. Jolivet, D. Karpeev, D. Kaushik, M. G. Knepley, F. Kong, S. Kruger, D. A. May, L. C. McInnes, R. T. Mills, L. Mitchell, T. Munson, J. E. Roman, K. Rupp, P. Sanan, J. Sarich, B. F. Smith, S. Zampini, H. Zhang, H. Zhang and J. Zhang, PETSc Web page, Available from: https://petsc.org/, 2024.
Griffith (26) 2012; 28
Hasan Kolahdouz Enquobahrie Caranasos Vavalle Griffith (35) 2017; 47
Alben Miller Peng (1) 2013; 733
Cortez Minion (15) 2000; 161
Devendran Peskin (19) 2012; 231
Evans Hughes (21) 2013; 23
I. J. Schoenberg, Cardinal Spline Interpolation, Society for Industrial and Applied Mathematics, 1973.
Gasser Ogden Holzapfel (23) 2006; 3
Lee LeVeque (44) 2003; 25
Roy-Chowdhury Shinar Schroeder (53) 2024; 503
Bao Kaye Peskin (7) 2016; 316
S. Turek and J. Hron, Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow, in Fluid-Structure Interaction, Springer Berlin Heidelberg, Berlin, Heidelberg, 53 (2006), 371-385.
W. W. Chen, H. Gao, X. Y. Luo and N. A. Hill, Study of cardiovascular function using a coupled left ventricle and systemic circulation model, Journal of Biomechanics, 49 (2016), 2445-2454, Cardiovascular Biomechanics in Health and Disease.
Nangia Bale Chen Hanna Patankar (46) 2017; 12
Casquero Bona-Casas Toshniwal Hughes Gomez Zhang (11) 2021; 425
Bhalla Bale Griffith Patankar (8) 2014; 256
Crowl Fogelson (16) 2011; 676
C. de Boor, A Practical Guide to Splines, Springer-Verlag, New York, 1978.
Unser Aldroubi Eden (60) 1992; 38
Kaiser McQueen Peskin (39) 2019; 35
Peskin (48) 2002; 11
Griffith Luo McQueen Peskin (30) 2009; 1
Peskin Printz (49) 1993; 105
Bao Donev Griffith McQueen Peskin (6) 2017; 347
Griffith (25) 2012; 12
Griffith Luo (29) 2017; 33
S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E. M. Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, J. Faibussowitsch, W. D. Gropp, V. Hapla, T. Isaac, P. Jolivet, D. Karpeev, D. Kaushik, M. G. Knepley, F. Kong, S. Kruger, D. A. May, L. C. McInnes, R. T. Mills, L. Mitchell, T. Munson, J. E. Roman, K. Rupp, P. Sanan, J. Sarich, B. F. Smith, S. Zampini, H. Zhang, H. Zhang and J. Zhang, PETSc/TAO Users Manual, Technical Report ANL-21/39 - Revision 3.22, Argonne National Laboratory, 2024.
Boffi Gastaldi Heltai Peskin (9) 2008; 197
Kamensky Hsu Yu Evans Sacks Hughes (40) 2017; 314
Schoenberg (55) 1946; 4
Griffith (24) 2009; 228
Schroeder Roy-Chowdhury Shinar (57) 2022; 468
Harlow Welch (34) 1965; 8
IBAMR Web page, Available from: http://ibamr.github.io/.
C. Gruninger and B. E. Griffith, Local divergence-free velocity interpolation for the immersed boundary method using composite B-splines, preprint, arXiv: : 408.08280, 2024.
Griffith Hornung McQueen Peskin (27) 2007; 223
Hornung Kohn (37) 2002; 14
Vadala-Roth Acharya Patankar Rossi Griffith (61) 2020; 365
key-10.3934/acse.2025011-40
key-10.3934/acse.2025011-41
key-10.3934/acse.2025011-42
key-10.3934/acse.2025011-47
key-10.3934/acse.2025011-48
key-10.3934/acse.2025011-49
key-10.3934/acse.2025011-43
key-10.3934/acse.2025011-44
key-10.3934/acse.2025011-45
key-10.3934/acse.2025011-46
key-10.3934/acse.2025011-50
key-10.3934/acse.2025011-51
key-10.3934/acse.2025011-52
key-10.3934/acse.2025011-53
key-10.3934/acse.2025011-14
key-10.3934/acse.2025011-58
key-10.3934/acse.2025011-15
key-10.3934/acse.2025011-59
key-10.3934/acse.2025011-16
key-10.3934/acse.2025011-17
key-10.3934/acse.2025011-10
key-10.3934/acse.2025011-54
key-10.3934/acse.2025011-11
key-10.3934/acse.2025011-55
key-10.3934/acse.2025011-12
key-10.3934/acse.2025011-56
key-10.3934/acse.2025011-13
key-10.3934/acse.2025011-57
key-10.3934/acse.2025011-18
key-10.3934/acse.2025011-19
key-10.3934/acse.2025011-9
key-10.3934/acse.2025011-3
key-10.3934/acse.2025011-61
key-10.3934/acse.2025011-4
key-10.3934/acse.2025011-62
key-10.3934/acse.2025011-1
key-10.3934/acse.2025011-63
key-10.3934/acse.2025011-2
key-10.3934/acse.2025011-20
key-10.3934/acse.2025011-64
key-10.3934/acse.2025011-7
key-10.3934/acse.2025011-8
key-10.3934/acse.2025011-5
key-10.3934/acse.2025011-6
key-10.3934/acse.2025011-60
key-10.3934/acse.2025011-25
key-10.3934/acse.2025011-26
key-10.3934/acse.2025011-27
key-10.3934/acse.2025011-28
key-10.3934/acse.2025011-21
key-10.3934/acse.2025011-65
key-10.3934/acse.2025011-22
key-10.3934/acse.2025011-23
key-10.3934/acse.2025011-24
key-10.3934/acse.2025011-29
key-10.3934/acse.2025011-30
key-10.3934/acse.2025011-31
key-10.3934/acse.2025011-36
key-10.3934/acse.2025011-37
key-10.3934/acse.2025011-38
key-10.3934/acse.2025011-39
key-10.3934/acse.2025011-32
key-10.3934/acse.2025011-33
key-10.3934/acse.2025011-34
key-10.3934/acse.2025011-35
References_xml – volume: 13
  start-page: 1
  year: 2015
  end-page: 22
  ident: 5
  article-title: Convergent evolution of mechanically optimal locomotion in aquatic invertebrates and vertebrates
  publication-title: PLOS Biology
  doi: 10.1371/journal.pbio.1002123
– volume: 25
  start-page: 832
  year: 2003
  end-page: 856
  ident: 44
  article-title: An immersed interface method for incompressible navier–stokes equations
  publication-title: SIAM Journal on Scientific Computing
  doi: 10.1137/S1064827502414060
– volume: 316
  start-page: 139
  year: 2016
  end-page: 144
  ident: 7
  article-title: A Gaussian-like immersed-boundary kernel with three continuous derivatives and improved translational invariance
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2016.04.024
– volume: 47
  start-page: 72
  year: 2017
  end-page: 84
  ident: 35
  article-title: Image-based immersed boundary model of the aortic root
  publication-title: Medical Engineering and Physics
– volume: 22
  start-page: 237
  year: 2006
  end-page: 254
  ident: 41
  article-title: IibMesh: A C++ library for parallel adaptive mesh refinement/coarsening simulations
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-006-0049-3
– volume: 374
  start-page: 625
  year: 2018
  end-page: 653
  ident: 12
  article-title: Non-body-fitted fluid–structure interaction: Divergence-conforming B-splines, fully-implicit dynamics and variational formulation
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2018.07.020
– reference: M. Davey, C. Puelz, S. Rossi, M. A. Smith, D. R. Wells, G. M. Sturgeon, W. P. Segars, J. P. Vavalle, C. S. Peskin and B. E. Griffith, Simulating cardiac fluid dynamics in the human heart, PNAS Nexus, 3 (2024), pgae392.
– volume: 153
  start-page: 509
  year: 1999
  end-page: 534
  ident: 52
  article-title: An adaptive version of the immersed boundary method
  publication-title: Journal of Computational Physics
  doi: 10.1006/jcph.1999.6293
– volume: 384
  start-page: 105
  year: 2015
  end-page: 120
  ident: 38
  article-title: Lift vs. drag based mechanisms for vertical force production in the smallest flying insects
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/j.jtbi.2015.07.035
– volume: 733
  start-page: 100
  year: 2013
  end-page: 133
  ident: 1
  article-title: Efficient kinematics for jet-propelled swimming
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2013.434
– volume: 813
  start-page: 1112
  year: 2017
  end-page: 1155
  ident: 36
  article-title: Quantifying performance in the medusan mechanospace with an actively swimming three-dimensional jellyfish model
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2017.3
– volume: 10
  start-page: 252
  year: 1972
  end-page: 271
  ident: 47
  article-title: Flow patterns around heart valves: A numerical method
  publication-title: Journal of Computational Physics
  doi: 10.1016/0021-9991(72)90065-4
– reference: P. A. Raviart and J. M. Thomas, A mixed finite element method for second-order elliptic problems, in Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 606 (1977), 292-315.
– volume: 477
  start-page: 111890
  year: 2023
  ident: 63
  article-title: A nodal immersed finite element-finite difference method
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2022.111890
– volume: 8
  start-page: 2182
  year: 1965
  end-page: 2189
  ident: 34
  article-title: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface
  publication-title: Physics of Fluids
  doi: 10.1063/1.1761178
– volume: 365
  start-page: 112978
  year: 2020
  ident: 61
  article-title: Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2020.112978
– volume: 193
  start-page: 2051
  year: 2004
  end-page: 2067
  ident: 64
  article-title: Immersed finite element method
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2003.12.044
– volume: 468
  start-page: 111500
  year: 2022
  ident: 57
  article-title: Local divergence-free polynomial interpolation on MAC grids
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2022.111500
– volume: 223
  start-page: 10
  year: 2007
  end-page: 49
  ident: 27
  article-title: An adaptive, formally second order accurate version of the immersed boundary method
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2006.08.019
– volume: 54
  start-page: 174
  year: 1984
  end-page: 201
  ident: 14
  article-title: The piecewise parabolic method (PPM) for gas-dynamical simulations
  publication-title: Journal of Computational Physics
  doi: 10.1016/0021-9991(84)90143-8
– volume: 1
  start-page: 137
  year: 2009
  end-page: 177
  ident: 30
  article-title: Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method
  publication-title: International Journal of Applied Mechanics
  doi: 10.1142/S1758825109000113
– volume: 256
  start-page: 88
  year: 2014
  end-page: 108
  ident: 8
  article-title: Fully resolved immersed electrohydrodynamics for particle motion, electrolocation and self-propulsion
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2013.08.043
– reference: I. J. Schoenberg, Cardinal Spline Interpolation, Society for Industrial and Applied Mathematics, 1973.
– volume: 33
  start-page: e2888
  year: 2017
  ident: 29
  article-title: Hybrid finite difference/finite element immersed boundary method
  publication-title: International Journal for Numerical Methods in Biomedical Engineering
  doi: 10.1002/cnm.2888
– volume: 347
  start-page: 183
  year: 2017
  end-page: 206
  ident: 6
  article-title: An immersed boundary method with divergence-free velocity interpolation and force spreading
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2017.06.041
– volume: 676
  start-page: 348
  year: 2011
  end-page: 375
  ident: 16
  article-title: Analysis of mechanisms for platelet near-wall excess under arterial blood flow conditions
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2011.54
– volume: 14
  start-page: 347
  year: 2002
  end-page: 368
  ident: 37
  article-title: Managing application complexity in the SAMRAI object-oriented framework
  publication-title: Concurrency and Computation: Practice and Experience
  doi: 10.1002/cpe.652
– reference: C. Gruninger and B. E. Griffith, Local divergence-free velocity interpolation for the immersed boundary method using composite B-splines, preprint, arXiv: : 408.08280, 2024.
– volume: 193
  start-page: 1305
  year: 2004
  end-page: 1321
  ident: 62
  article-title: Extended immersed boundary method using FEM and RKPM
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2003.12.024
– volume: 503
  start-page: 112831
  year: 2024
  ident: 53
  article-title: Higher order divergence-free and curl-free interpolation on MAC grids
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2024.112831
– volume: 228
  start-page: 7565
  year: 2009
  end-page: 7595
  ident: 24
  article-title: An accurate and efficient method for the incompressible Navier-Stokes equations using the projection method as a preconditioner
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2009.07.001
– volume: 35
  start-page: e3240
  year: 2019
  ident: 39
  article-title: Modeling the mitral valve
  publication-title: International Journal for Numerical Methods in Biomedical Engineering
  doi: 10.1002/cnm.3240
– volume: 314
  start-page: 408
  year: 2017
  end-page: 472
  ident: 40
  article-title: Immersogeometric cardiovascular fluid–structure interaction analysis with divergence-conforming B-splines
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2016.07.028
– volume: 20
  start-page: 1081
  year: 1995
  end-page: 1106
  ident: 45
  article-title: Reproducing kernel particle methods
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/fld.1650200824
– reference: S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E. M. Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, J. Faibussowitsch, W. D. Gropp, V. Hapla, T. Isaac, P. Jolivet, D. Karpeev, D. Kaushik, M. G. Knepley, F. Kong, S. Kruger, D. A. May, L. C. McInnes, R. T. Mills, L. Mitchell, T. Munson, J. E. Roman, K. Rupp, P. Sanan, J. Sarich, B. F. Smith, S. Zampini, H. Zhang, H. Zhang and J. Zhang, PETSc/TAO Users Manual, Technical Report ANL-21/39 - Revision 3.22, Argonne National Laboratory, 2024.
– volume: 12
  start-page: 401
  year: 2012
  end-page: 432
  ident: 25
  article-title: On the volume conservation of the immersed boundary method
  publication-title: Communications in Computational Physics
  doi: 10.4208/cicp.120111.300911s
– volume: 4
  start-page: 112
  year: 1946
  end-page: 141
  ident: 55
  article-title: Contributions to the problem of approximation of equidistant data by analytic functions. Part A.- On the problem of smoothing or graduation. A first class of analytic approximation formulae. Part B.- On the second problem of osculatory interpolation. A second class of analytic approximation formulae
  publication-title: Quaterly of Applied Mathematics
  doi: 10.1090/qam/16705
– reference: S. Balay, W. D. Gropp, L. C. McInnes and B. F. Smith, Efficient management of parallelism in object oriented numerical software libraries, in Modern Software Tools in Scientific Computing, Birkhäuser Press, (1997), 163-202.
– volume: 23
  start-page: 671
  year: 2013
  end-page: 741
  ident: 21
  article-title: Isogeometric divergence-conforming B-Splines for the Darcy–Stokes–Brinkman equations
  publication-title: Mathematical Models and Methods in Applied Sciences
  doi: 10.1142/S0218202512500583
– volume: 197
  start-page: 2210
  year: 2008
  end-page: 2231
  ident: 9
  article-title: On the hyper-elastic formulation of the immersed boundary method
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2007.09.015
– reference: C. de Boor, A Practical Guide to Splines, Springer-Verlag, New York, 1978.
– volume: 225
  start-page: 1827
  year: 2007
  end-page: 1848
  ident: 51
  article-title: Accurate monotonicity- and extrema-preserving methods through adaptive nonlinear hybridizations
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2007.02.023
– volume: 506
  start-page: 112888
  year: 2024
  ident: 31
  article-title: Benchmarking the immersed boundary method for viscoelastic flows
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2024.112888
– volume: 161
  start-page: 428
  year: 2000
  end-page: 453
  ident: 15
  article-title: The blob projection method for immersed boundary problems
  publication-title: Journal of Computational Physics
  doi: 10.1006/jcph.2000.6502
– volume: 38
  start-page: 864
  year: 1992
  end-page: 872
  ident: 60
  article-title: On the asymptotic convergence of B-spline wavelets to Gabor functions
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/18.119742
– volume: 3
  start-page: 15
  year: 2006
  end-page: 35
  ident: 23
  article-title: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations
  publication-title: Journal of The Royal Society Interface
  doi: 10.1098/rsif.2005.0073
– volume: 425
  start-page: 109872
  year: 2021
  ident: 11
  article-title: The divergence-conforming immersed boundary method: Application to vesicle and capsule dynamics
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2020.109872
– volume: 231
  start-page: 4613
  year: 2012
  end-page: 4642
  ident: 19
  article-title: An immersed boundary energy-based method for incompressible viscoelasticity
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2012.02.020
– reference: W. W. Chen, H. Gao, X. Y. Luo and N. A. Hill, Study of cardiovascular function using a coupled left ventricle and systemic circulation model, Journal of Biomechanics, 49 (2016), 2445-2454, Cardiovascular Biomechanics in Health and Disease.
– volume: 105
  start-page: 33
  year: 1993
  end-page: 46
  ident: 49
  article-title: Improved volume conservation in the computation of flows with immersed elastic boundaries
  publication-title: Journal of Computational Physics
  doi: 10.1006/jcph.1993.1051
– volume: 11
  start-page: 479
  year: 2002
  end-page: 517
  ident: 48
  article-title: The immersed boundary method
  publication-title: Acta Numerica
  doi: 10.1017/S0962492902000077
– volume: 457
  start-page: 111042
  year: 2022
  ident: 42
  article-title: On the Lagrangian-Eulerian coupling in the immersed finite element/difference method
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2022.111042
– reference: S. Turek and J. Hron, Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow, in Fluid-Structure Interaction, Springer Berlin Heidelberg, Berlin, Heidelberg, 53 (2006), 371-385.
– volume: 57
  start-page: 829
  year: 1961
  end-page: 838
  ident: 22
  article-title: Thermodynamic relations for high elastic materials
  publication-title: Transactions of the Faraday Society
  doi: 10.1039/tf9615700829
– reference: IBAMR Web page, Available from: http://ibamr.github.io/.
– reference: B. E. Griffith, R. D. Hornung, D. M. McQueen and C. S. Peskin, Parallel and adaptive simulation of cardiac fluid dynamics, in Advanced Computational Infrastructures for Parallel and Distributed Adaptive Applications, (2009), 105-130.
– volume: 48
  start-page: 1475
  year: 2020
  end-page: 1490
  ident: 43
  article-title: Fluid–structure interaction models of bioprosthetic heart valve dynamics in an experimental pulse duplicator
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-020-02466-4
– reference: S. Balay, S. Abhyankar, M.F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E. M. Constantinescu, L. o Dalcin, A. Dener, V. Eijkhout, J. Faibussowitsch, W. D. Gropp, V. Hapla, T. Isaac, P. Jolivet, D. Karpeev, D. Kaushik, M. G. Knepley, F. Kong, S. Kruger, D. A. May, L. C. McInnes, R. T. Mills, L. Mitchell, T. Munson, J. E. Roman, K. Rupp, P. Sanan, J. Sarich, B. F. Smith, S. Zampini, H. Zhang, H. Zhang and J. Zhang, PETSc Web page, Available from: https://petsc.org/, 2024.
– volume: 12
  start-page: 1
  year: 2017
  end-page: 23
  ident: 46
  article-title: Optimal specific wavelength for maximum thrust production in undulatory propulsion
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0179727
– volume: 28
  start-page: 317
  year: 2012
  end-page: 345
  ident: 26
  article-title: Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions
  publication-title: International Journal for Numerical Methods in Biomedical Engineering
  doi: 10.1002/cnm.1445
– volume: 4
  start-page: 491
  year: 1984
  end-page: 502
  ident: 33
  article-title: Spline representation of incompressible flow
  publication-title: IMA Journal of Numerical Analysis
  doi: 10.1093/imanum/4.4.491
– volume: 3
  year: 2018
  ident: 54
  article-title: Flow structure and force generation on flapping wings at low reynolds numbers relevant to the flight of tiny insects
  publication-title: Fluids
  doi: 10.3390/fluids3030045
– volume: 117
  start-page: 48
  year: 2014
  end-page: 56
  ident: 59
  article-title: The role of mechanical resonance in the neural control of swimming in fishes
  publication-title: Zoology
  doi: 10.1016/j.zool.2013.10.011
– volume: 23
  start-page: 1421
  year: 2013
  end-page: 1478
  ident: 20
  article-title: Isogeometric divergence-conforming B-splines for the steady Navier-Stokes equations
  publication-title: Mathematical Models and Methods in Applied Sciences
  doi: 10.1142/S0218202513500139
– ident: key-10.3934/acse.2025011-52
  doi: 10.1006/jcph.1999.6293
– ident: key-10.3934/acse.2025011-51
  doi: 10.1016/j.jcp.2007.02.023
– ident: key-10.3934/acse.2025011-65
– ident: key-10.3934/acse.2025011-58
  doi: 10.1007/3-540-34596-5_15
– ident: key-10.3934/acse.2025011-43
  doi: 10.1007/s10439-020-02466-4
– ident: key-10.3934/acse.2025011-27
  doi: 10.1016/j.jcp.2006.08.019
– ident: key-10.3934/acse.2025011-44
  doi: 10.1137/S1064827502414060
– ident: key-10.3934/acse.2025011-8
  doi: 10.1016/j.jcp.2013.08.043
– ident: key-10.3934/acse.2025011-29
  doi: 10.1002/cnm.2888
– ident: key-10.3934/acse.2025011-49
  doi: 10.1006/jcph.1993.1051
– ident: key-10.3934/acse.2025011-23
  doi: 10.1098/rsif.2005.0073
– ident: key-10.3934/acse.2025011-20
  doi: 10.1142/S0218202513500139
– ident: key-10.3934/acse.2025011-31
  doi: 10.1016/j.jcp.2024.112888
– ident: key-10.3934/acse.2025011-55
  doi: 10.1090/qam/16705
– ident: key-10.3934/acse.2025011-10
– ident: key-10.3934/acse.2025011-60
  doi: 10.1109/18.119742
– ident: key-10.3934/acse.2025011-12
  doi: 10.1016/j.jcp.2018.07.020
– ident: key-10.3934/acse.2025011-25
  doi: 10.4208/cicp.120111.300911s
– ident: key-10.3934/acse.2025011-21
  doi: 10.1142/S0218202512500583
– ident: key-10.3934/acse.2025011-37
  doi: 10.1002/cpe.652
– ident: key-10.3934/acse.2025011-13
  doi: 10.1016/j.jbiomech.2016.03.009
– ident: key-10.3934/acse.2025011-64
  doi: 10.1016/j.cma.2003.12.044
– ident: key-10.3934/acse.2025011-4
  doi: 10.1007/978-1-4612-1986-6_8
– ident: key-10.3934/acse.2025011-39
  doi: 10.1002/cnm.3240
– ident: key-10.3934/acse.2025011-47
  doi: 10.1016/0021-9991(72)90065-4
– ident: key-10.3934/acse.2025011-3
– ident: key-10.3934/acse.2025011-59
  doi: 10.1016/j.zool.2013.10.011
– ident: key-10.3934/acse.2025011-5
  doi: 10.1371/journal.pbio.1002123
– ident: key-10.3934/acse.2025011-18
  doi: 10.1007/978-1-4612-6333-3
– ident: key-10.3934/acse.2025011-45
  doi: 10.1002/fld.1650200824
– ident: key-10.3934/acse.2025011-53
  doi: 10.1016/j.jcp.2024.112831
– ident: key-10.3934/acse.2025011-26
  doi: 10.1002/cnm.1445
– ident: key-10.3934/acse.2025011-9
  doi: 10.1016/j.cma.2007.09.015
– ident: key-10.3934/acse.2025011-33
  doi: 10.1093/imanum/4.4.491
– ident: key-10.3934/acse.2025011-38
  doi: 10.1016/j.jtbi.2015.07.035
– ident: key-10.3934/acse.2025011-17
  doi: 10.1093/pnasnexus/pgae392
– ident: key-10.3934/acse.2025011-48
  doi: 10.1017/S0962492902000077
– ident: key-10.3934/acse.2025011-11
  doi: 10.1016/j.jcp.2020.109872
– ident: key-10.3934/acse.2025011-63
  doi: 10.1016/j.jcp.2022.111890
– ident: key-10.3934/acse.2025011-36
  doi: 10.1017/jfm.2017.3
– ident: key-10.3934/acse.2025011-28
  doi: 10.1002/9780470558027.ch7
– ident: key-10.3934/acse.2025011-16
  doi: 10.1017/jfm.2011.54
– ident: key-10.3934/acse.2025011-35
– ident: key-10.3934/acse.2025011-40
  doi: 10.1016/j.cma.2016.07.028
– ident: key-10.3934/acse.2025011-57
  doi: 10.1016/j.jcp.2022.111500
– ident: key-10.3934/acse.2025011-34
  doi: 10.1063/1.1761178
– ident: key-10.3934/acse.2025011-61
  doi: 10.1016/j.cma.2020.112978
– ident: key-10.3934/acse.2025011-15
  doi: 10.1006/jcph.2000.6502
– ident: key-10.3934/acse.2025011-22
  doi: 10.1039/tf9615700829
– ident: key-10.3934/acse.2025011-19
  doi: 10.1016/j.jcp.2012.02.020
– ident: key-10.3934/acse.2025011-24
  doi: 10.1016/j.jcp.2009.07.001
– ident: key-10.3934/acse.2025011-41
  doi: 10.1007/s00366-006-0049-3
– ident: key-10.3934/acse.2025011-46
  doi: 10.1371/journal.pone.0179727
– ident: key-10.3934/acse.2025011-14
  doi: 10.1016/0021-9991(84)90143-8
– ident: key-10.3934/acse.2025011-56
  doi: 10.1137/1.9781611970555
– ident: key-10.3934/acse.2025011-1
  doi: 10.1017/jfm.2013.434
– ident: key-10.3934/acse.2025011-62
  doi: 10.1016/j.cma.2003.12.024
– ident: key-10.3934/acse.2025011-7
  doi: 10.1016/j.jcp.2016.04.024
– ident: key-10.3934/acse.2025011-30
  doi: 10.1142/S1758825109000113
– ident: key-10.3934/acse.2025011-42
  doi: 10.1016/j.jcp.2022.111042
– ident: key-10.3934/acse.2025011-2
  doi: 10.2172/2337606
– ident: key-10.3934/acse.2025011-6
  doi: 10.1016/j.jcp.2017.06.041
– ident: key-10.3934/acse.2025011-54
  doi: 10.3390/fluids3030045
– ident: key-10.3934/acse.2025011-32
– ident: key-10.3934/acse.2025011-50
  doi: 10.1007/BFb0064470
SSID ssib053497868
ssib051265665
Score 1.9104891
Snippet In the class of immersed boundary (IB) methods, the choice of the regularized delta function plays a crucial role in transferring information between fluid and...
SourceID pubmedcentral
proquest
pubmed
crossref
aims
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 16
Title Local divergence-free immersed finite element-difference method using composite B-splines
URI http://www.aimsciences.org/article/id/67fcd90c55a5ae148e358355
https://www.ncbi.nlm.nih.gov/pubmed/40842861
https://www.proquest.com/docview/3246305375
https://pubmed.ncbi.nlm.nih.gov/PMC12365689
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2837-1739
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib051265665
  issn: 2837-1739
  databaseCode: M~E
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBbZbSl7KS19pY_FLe0puI2fso7bxskG8iJJy_ZkJFumgV0nJJsle-lv74wUOU6WhfbQizG2kGDm82hmPPOJkI-plyGNkmuHECvYvsNDm4PXYGOTp3ADzpgr1GETdDCILi7YqFa7Nb0wN5e0KKLNhi3-q6rhGSgbW2f_Qd3lpPAA7kHpcAW1w_WvFN8bIsNBq_sjHncwf2S3x3Hc6Pb78XgStxrt7gCsVSPuKRp_u9Vtt-OxyjP14-n5ECLCiU5g9UfDCY78ak9GPTybo-rHnunSAVVMm6qDIUxS0fQJYUJe7sgOy8If3Y0NoNzMyh2hs1wXKr2o0rbzyxJspkyIy10TRWebZlLInN_CUnE1deEGuxKrz1KZOKTesR2q6YyMPfYr9lT3YR6aeY95Pu5h6QqJTsGJ0_a6otzFldKu34wgvAqd3WZXliCaV0fkgUsDhgax_zs2pgjcIHR0S1MXeHgSXxjp1glc_0t19RPyyMwHWzufXa323Zw7scthCW7Fp5k-IY-3wYh1pkH0lNRk8Yz8VACyDgBkGQBZGkDWXQBZGkCWApBVAsgqAfScfG_H02_n9vYADpuDF-jYTip8yWTmpcILcw6-qsizKOdRBtJxoiz0aM6l8GlTou8tQ7dJM4H0R2GaU0G9F-S4mBfyFbGY67KMi4zlfuD7QjCXYiYgbFLKqRs5dfIBxZZsP6RVAsEpijlBMSdbMdfJJyPUZKHJWO4Z995IPAFrib_AeCHn61UC4UPoIYVRUCcvtQbKmYwG6yTa0005AJnY998Us1-KkR0pjIIwYq_vnfQNOdl9AW_J8fVyLd-Rh-nN9Wy1PCVH9CI6VQj8A0cikn0
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LOCAL+DIVERGENCE-FREE+IMMERSED+FINITE+ELEMENT-DIFFERENCE+METHOD+USING+COMPOSITE+B-SPLINES&rft.jtitle=Advances+in+computational+science+and+engineering&rft.au=Li%2C+Lianxia&rft.au=Gruninger%2C+Cole&rft.au=Lee%2C+Jae+H&rft.au=Griffith%2C+Boyce+E&rft.date=2025-06-01&rft.eissn=2837-1739&rft.volume=4&rft.spage=16&rft_id=info:doi/10.3934%2Facse.2025011&rft_id=info%3Apmid%2F40842861&rft.externalDocID=40842861
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2837-1739&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2837-1739&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2837-1739&client=summon