Random noise attenuation via the randomized canonical polyadic decomposition
ABSTRACT Tensor algebra provides a robust framework for multi‐dimensional seismic data processing. A low‐rank tensor can represent a noise‐free seismic data volume. Additive random noise will increase the rank of the tensor. Hence, tensor rank‐reduction techniques can be used to filter random noise....
Uloženo v:
| Vydáno v: | Geophysical Prospecting Ročník 68; číslo 3; s. 872 - 891 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Houten
Wiley Subscription Services, Inc
01.03.2020
|
| Témata: | |
| ISSN: | 0016-8025, 1365-2478 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | ABSTRACT
Tensor algebra provides a robust framework for multi‐dimensional seismic data processing. A low‐rank tensor can represent a noise‐free seismic data volume. Additive random noise will increase the rank of the tensor. Hence, tensor rank‐reduction techniques can be used to filter random noise. Our filtering method adopts the Candecomp/Parafac decomposition to approximates a N‐dimensional seismic data volume via the superposition of rank‐one tensors. Similar to the singular value decomposition for matrices, a low‐rank Candecomp/Parafac decomposition can capture the signal and exclude random noise in situations where a low‐rank tensor can represent the ideal noise‐free seismic volume. The alternating least squares method is adopted to compute the Candecomp/Parafac decomposition with a provided target rank. This method involves solving a series of highly over‐determined linear least‐squares subproblems. To improve the efficiency of the alternating least squares algorithm, we uniformly randomly sample equations of the linear least‐squares subproblems to reduce the size of the problem significantly. The computational overhead is further reduced by avoiding unfolding and folding large dense tensors. We investigate the applicability of the randomized Candecomp/Parafac decomposition for incoherent noise attenuation via experiments conducted on a synthetic dataset and field data seismic volumes. We also compare the proposed algorithm (randomized Candecomp/Parafac decomposition) against multi‐dimensional singular spectrum analysis and classical f−xy prediction filtering. We conclude the proposed approach can achieve slightly better denoising performance in terms of signal‐to‐noise ratio enhancement than traditional methods, but with a less computational cost. |
|---|---|
| AbstractList | Tensor algebra provides a robust framework for multi‐dimensional seismic data processing. A low‐rank tensor can represent a noise‐free seismic data volume. Additive random noise will increase the rank of the tensor. Hence, tensor rank‐reduction techniques can be used to filter random noise. Our filtering method adopts the Candecomp/Parafac decomposition to approximates a N‐dimensional seismic data volume via the superposition of rank‐one tensors. Similar to the singular value decomposition for matrices, a low‐rank Candecomp/Parafac decomposition can capture the signal and exclude random noise in situations where a low‐rank tensor can represent the ideal noise‐free seismic volume. The alternating least squares method is adopted to compute the Candecomp/Parafac decomposition with a provided target rank. This method involves solving a series of highly over‐determined linear least‐squares subproblems. To improve the efficiency of the alternating least squares algorithm, we uniformly randomly sample equations of the linear least‐squares subproblems to reduce the size of the problem significantly. The computational overhead is further reduced by avoiding unfolding and folding large dense tensors. We investigate the applicability of the randomized Candecomp/Parafac decomposition for incoherent noise attenuation via experiments conducted on a synthetic dataset and field data seismic volumes. We also compare the proposed algorithm (randomized Candecomp/Parafac decomposition) against multi‐dimensional singular spectrum analysis and classical f−xy prediction filtering. We conclude the proposed approach can achieve slightly better denoising performance in terms of signal‐to‐noise ratio enhancement than traditional methods, but with a less computational cost. ABSTRACT Tensor algebra provides a robust framework for multi‐dimensional seismic data processing. A low‐rank tensor can represent a noise‐free seismic data volume. Additive random noise will increase the rank of the tensor. Hence, tensor rank‐reduction techniques can be used to filter random noise. Our filtering method adopts the Candecomp/Parafac decomposition to approximates a N‐dimensional seismic data volume via the superposition of rank‐one tensors. Similar to the singular value decomposition for matrices, a low‐rank Candecomp/Parafac decomposition can capture the signal and exclude random noise in situations where a low‐rank tensor can represent the ideal noise‐free seismic volume. The alternating least squares method is adopted to compute the Candecomp/Parafac decomposition with a provided target rank. This method involves solving a series of highly over‐determined linear least‐squares subproblems. To improve the efficiency of the alternating least squares algorithm, we uniformly randomly sample equations of the linear least‐squares subproblems to reduce the size of the problem significantly. The computational overhead is further reduced by avoiding unfolding and folding large dense tensors. We investigate the applicability of the randomized Candecomp/Parafac decomposition for incoherent noise attenuation via experiments conducted on a synthetic dataset and field data seismic volumes. We also compare the proposed algorithm (randomized Candecomp/Parafac decomposition) against multi‐dimensional singular spectrum analysis and classical f−xy prediction filtering. We conclude the proposed approach can achieve slightly better denoising performance in terms of signal‐to‐noise ratio enhancement than traditional methods, but with a less computational cost. Tensor algebra provides a robust framework for multi‐dimensional seismic data processing. A low‐rank tensor can represent a noise‐free seismic data volume. Additive random noise will increase the rank of the tensor. Hence, tensor rank‐reduction techniques can be used to filter random noise. Our filtering method adopts the Candecomp/Parafac decomposition to approximates a N ‐dimensional seismic data volume via the superposition of rank‐one tensors. Similar to the singular value decomposition for matrices, a low‐rank Candecomp/Parafac decomposition can capture the signal and exclude random noise in situations where a low‐rank tensor can represent the ideal noise‐free seismic volume. The alternating least squares method is adopted to compute the Candecomp/Parafac decomposition with a provided target rank. This method involves solving a series of highly over‐determined linear least‐squares subproblems. To improve the efficiency of the alternating least squares algorithm, we uniformly randomly sample equations of the linear least‐squares subproblems to reduce the size of the problem significantly. The computational overhead is further reduced by avoiding unfolding and folding large dense tensors. We investigate the applicability of the randomized Candecomp/Parafac decomposition for incoherent noise attenuation via experiments conducted on a synthetic dataset and field data seismic volumes. We also compare the proposed algorithm (randomized Candecomp/Parafac decomposition) against multi‐dimensional singular spectrum analysis and classical prediction filtering. We conclude the proposed approach can achieve slightly better denoising performance in terms of signal‐to‐noise ratio enhancement than traditional methods, but with a less computational cost. |
| Author | Gao, Wenlei Sacchi, Mauricio D. |
| Author_xml | – sequence: 1 givenname: Wenlei orcidid: 0000-0002-5916-1779 surname: Gao fullname: Gao, Wenlei email: wgao1@ualberta.ca organization: University of Alberta – sequence: 2 givenname: Mauricio D. surname: Sacchi fullname: Sacchi, Mauricio D. organization: University of Alberta |
| BookMark | eNqFkMFLwzAUh4NMcJuevQY8d0vSJGuOMnQTBsrQc8iSV8zoktp0yvzrbVfx6rs8eHzf-8FvgkYhBkDolpIZ7WZOcykyxhfFjLJC8Qs0_ruM0JgQKrOCMHGFJintCcmJEHyMNlsTXDzgEH0CbNoWwtG0Pgb86Q1u3wE3Z8B_g8PWdJnemgrXsToZ5y12YOOhjsn3zjW6LE2V4OZ3T9Hb48Prcp1tnldPy_tNZphiPKM7YMzKHIzjhZMEdqUSfFdKpUAVuZSElI5ww8AyxaVxsCiVLRSAEdRRmU_R3fC3buLHEVKr9_HYhC5Ss1xwwhnntKPmA2WbmFIDpa4bfzDNSVOi-8p0X5DuC9LnyjpDDMaXr-D0H65XL9vB-wHqUnA7 |
| Cites_doi | 10.1190/1.1836829 10.1190/1.3552706 10.1109/TSP.2015.2458789 10.1137/17M1112303 10.1287/ijoc.2014.0623 10.1109/TIP.2002.1014998 10.1109/LGRS.2019.2895702 10.1190/1.1567245 10.1137/07070111X 10.1190/segam2015-5884504.1 10.1109/TSP.2013.2269903 10.1190/1.1822843 10.1190/1.2954035 10.1190/1.1443845 10.1190/1.3513645 10.1190/1.1894168 10.1073/pnas.0804869105 10.1190/1.1887383 10.1109/TIP.2017.2662206 10.1190/1.1443920 10.1071/EG992051 10.1190/1.1468626 10.1109/TSP.2017.2690524 10.1190/1.1444852 10.1190/geo2011-0399.1 10.1007/BF02532251 10.1190/1.3484195 10.1002/cem.1236 10.1190/1.2799517 10.1190/1.1893128 10.1190/INT-2018-0224.1 10.1190/segam2015-5842738.1 10.1111/j.1365-2478.2009.00846.x 10.1190/geo2013-0168.1 10.1109/78.651165 |
| ContentType | Journal Article |
| Copyright | 2019 European Association of Geoscientists & Engineers 2020 European Association of Geoscientists & Engineers |
| Copyright_xml | – notice: 2019 European Association of Geoscientists & Engineers – notice: 2020 European Association of Geoscientists & Engineers |
| DBID | AAYXX CITATION 8FD F1W FR3 H96 KR7 L.G |
| DOI | 10.1111/1365-2478.12894 |
| DatabaseName | CrossRef Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Engineering |
| EISSN | 1365-2478 |
| EndPage | 891 |
| ExternalDocumentID | 10_1111_1365_2478_12894 GPR12894 |
| Genre | article |
| GroupedDBID | -~X 1OB 1OC ALMA_UNASSIGNED_HOLDINGS BDRZF BRZYM DDYGU FZ0 AAYXX CITATION PALCI 8FD F1W FR3 H96 KR7 L.G |
| ID | FETCH-LOGICAL-a2924-1be22c63ead48d60ebf954bf699e9836600fd04a2ec2946ade7f9c89eea51d163 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000513102000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0016-8025 |
| IngestDate | Mon Jun 30 08:25:13 EDT 2025 Sat Nov 29 02:58:43 EST 2025 Sat Aug 24 01:07:49 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a2924-1be22c63ead48d60ebf954bf699e9836600fd04a2ec2946ade7f9c89eea51d163 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5916-1779 |
| PQID | 2354042441 |
| PQPubID | 1066348 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_2354042441 crossref_primary_10_1111_1365_2478_12894 wiley_primary_10_1111_1365_2478_12894_GPR12894 |
| PublicationCentury | 2000 |
| PublicationDate | March 2020 2020-03-00 20200301 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Houten |
| PublicationPlace_xml | – name: Houten |
| PublicationTitle | Geophysical Prospecting |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2009; 23 2019; 7 2010; 75 2010; 58 2017; 26 2011 2010 2000; 65 2004; 69 2013; 61 2017; 65 2002; 11 2019; 16 2011; 76 1995 2008; 105 1994 1970 2007; 73 2015; 9 2012; 77 1998; 46 2018; 39 1995; 60 2015; 28 2009; 51 2015; 27 2013; 79 2002; 67 2015; 63 1969; 21 2008; 27 2001; 9 2003; 68 1986 2019 1984 2015 1992; 23 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 Xu Y. (e_1_2_6_42_1) 2015; 9 e_1_2_6_40_1 Wang Y. (e_1_2_6_41_1) 2015; 28 Sacchi M.D. (e_1_2_6_28_1) 2001; 9 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_27_1 e_1_2_6_26_1 |
| References_xml | – volume: 60 start-page: 1887 year: 1995 end-page: 1896 article-title: Lateral prediction for noise attenuation by t‐x and f‐x techniques publication-title: Geophysics – volume: 27 start-page: 924 year: 2008 end-page: 938 article-title: Changing the mindset in seismic data acquisition publication-title: The Leading Edge – volume: 23 start-page: 51 year: 1992 end-page: 55 article-title: Random noise reduction by FXY prediction filtering publication-title: Exploration Geophysics – year: 2011 – volume: 26 start-page: 3142 year: 2017 end-page: 3155 article-title: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising publication-title: IEEE Transactions on Image Processing – volume: 65 start-page: 1641 year: 2000 end-page: 1653 article-title: Noncausal spatial prediction filtering for random noise reduction on 3‐D poststack data publication-title: Geophysics – volume: 79 start-page: V1 year: 2013 end-page: V11 article-title: Simultaneous source separation using a robust Radon transform publication-title: Geophysics – volume: 58 start-page: 441 year: 2010 end-page: 453 article-title: Time‐frequency seismic data de‐noising publication-title: Geophysical Prospecting – volume: 28 start-page: 991 year: 2015 end-page: 999 article-title: Fast and guaranteed tensor decomposition via sketching publication-title: Advances in Neural Information Processing Systems – volume: 65 start-page: 3551 year: 2017 end-page: 3582 article-title: Tensor decomposition for signal processing and machine learning publication-title: IEEE Transactions on Signal Processing – volume: 105 start-page: 13212 year: 2008 end-page: 13217 article-title: A fast randomized algorithm for overdetermined linear least‐squares regression publication-title: Proceedings of the National Academy of Sciences – volume: 16 start-page: 1314 year: 2019 end-page: 1318 article-title: Residual learning of deep convolutional neural network for seismic random noise attenuation publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 9 start-page: 601 year: 2015 end-page: 624 article-title: Parallel matrix factorization for low‐rank tensor completion publication-title: American Institute of Mathematical Sciences – volume: 11 start-page: 670 year: 2002 end-page: 684 article-title: The curvelet transform for image denoising publication-title: IEEE Transactions on Image Processing – volume: 73 start-page: A1 year: 2007 end-page: A5 article-title: Curvelet‐based seismic data processing: a multiscale and nonlinear approach publication-title: Geophysics – volume: 60 start-page: 1169 year: 1995 end-page: 1177 article-title: High‐resolution velocity gathers and offset space reconstruction publication-title: Geophysics – start-page: 711 year: 1995 end-page: 714 – volume: 23 start-page: 393 year: 2009 end-page: 405 article-title: Tensor decompositions, alternating least squares and other tales publication-title: Journal of Chemometrics – start-page: 279 year: 1986 end-page: 281 – volume: 67 start-page: 644 year: 2002 end-page: 656 article-title: Accurate interpolation with high‐resolution time‐variant Radon transforms publication-title: Geophysics – volume: 9 start-page: 185 year: 2001 end-page: 198 article-title: ARMA formulation of f‐x prediction error filters and projection filters publication-title: Journal of Seismic Exploration – start-page: 1576 year: 1994 end-page: 1579 – start-page: 525 year: 1984 end-page: 527 – start-page: 3784 year: 2015 end-page: 3788 – volume: 63 start-page: 5939 year: 2015 end-page: 5950 article-title: Tensor deflation for CANDECOMP/PARAFAC ‐ Part II: Initialization and error analysis publication-title: IEEE Transactions on Signal Processing – volume: 46 start-page: 31 year: 1998 end-page: 38 article-title: Interpolation and extrapolation using a high‐resolution discrete Fourier transform publication-title: IEEE Transactions on Signal Processing – volume: 68 start-page: 751 year: 2003 end-page: 759 article-title: F‐xy eigenimage noise suppression publication-title: Geophysics – volume: 61 start-page: 4834 year: 2013 end-page: 4846 article-title: Fast alternating LS algorithms for high order CANDECOMP/PARAFAC tensor factorizations publication-title: IEEE Transactions on Signal Processing – volume: 7 start-page: SE131 issue: 3 year: 2019 end-page: SE139 article-title: Applying machine learning to 3D seismic image denoising and enhancement publication-title: Interpretation – volume: 21 start-page: 243 year: 1969 end-page: 247 article-title: Fitting autoregressive models for prediction publication-title: Annals of the Institute of Statistical Mathematics – volume: 77 start-page: V113 year: 2012 end-page: V122 article-title: A tensor higher‐order singular value decomposition for prestack seismic data noise reduction and interpolation publication-title: Geophysics – volume: 27 start-page: 238 year: 2015 end-page: 248 article-title: Computing in operations research using Julia publication-title: INFORMS Journal on Computing – volume: 76 start-page: V25 issue: 3 year: 2011 end-page: V32 article-title: Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis publication-title: Geophysics – start-page: 3829 year: 2010 end-page: 3833 – year: 1970 – volume: 69 start-page: 1560 year: 2004 end-page: 1568 article-title: Minimum weighted norm interpolation of seismic records publication-title: Geophysics – volume: 75 start-page: WB225 year: 2010 end-page: WB234 article-title: Seismic data interpolation by greedy local Radon transform publication-title: Geophysics – year: 2019 – volume: 39 start-page: 876 year: 2018 end-page: 901 article-title: A practical randomized CP tensor decomposition publication-title: SIAM Journal on Matrix Analysis and Applications – volume: 51 start-page: 455 year: 2009 end-page: 500 article-title: Tensor decompositions and applications publication-title: SIAM Review – year: 2015 – ident: e_1_2_6_20_1 doi: 10.1190/1.1836829 – ident: e_1_2_6_22_1 doi: 10.1190/1.3552706 – ident: e_1_2_6_24_1 doi: 10.1109/TSP.2015.2458789 – ident: e_1_2_6_4_1 doi: 10.1137/17M1112303 – ident: e_1_2_6_21_1 doi: 10.1287/ijoc.2014.0623 – ident: e_1_2_6_34_1 doi: 10.1109/TIP.2002.1014998 – ident: e_1_2_6_39_1 doi: 10.1109/LGRS.2019.2895702 – ident: e_1_2_6_37_1 doi: 10.1190/1.1567245 – ident: e_1_2_6_17_1 doi: 10.1137/07070111X – ident: e_1_2_6_18_1 – ident: e_1_2_6_27_1 doi: 10.1190/segam2015-5884504.1 – ident: e_1_2_6_23_1 doi: 10.1109/TSP.2013.2269903 – ident: e_1_2_6_32_1 doi: 10.1190/1.1822843 – ident: e_1_2_6_5_1 doi: 10.1190/1.2954035 – ident: e_1_2_6_11_1 – ident: e_1_2_6_14_1 – ident: e_1_2_6_29_1 doi: 10.1190/1.1443845 – volume: 9 start-page: 185 year: 2001 ident: e_1_2_6_28_1 article-title: ARMA formulation of f‐x prediction error filters and projection filters publication-title: Journal of Seismic Exploration – ident: e_1_2_6_36_1 doi: 10.1190/1.3513645 – ident: e_1_2_6_6_1 doi: 10.1190/1.1894168 – ident: e_1_2_6_26_1 doi: 10.1073/pnas.0804869105 – ident: e_1_2_6_33_1 doi: 10.1190/1.1887383 – ident: e_1_2_6_43_1 doi: 10.1109/TIP.2017.2662206 – volume: 28 start-page: 991 year: 2015 ident: e_1_2_6_41_1 article-title: Fast and guaranteed tensor decomposition via sketching publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_6_2_1 doi: 10.1190/1.1443920 – ident: e_1_2_6_25_1 – ident: e_1_2_6_7_1 doi: 10.1071/EG992051 – ident: e_1_2_6_35_1 doi: 10.1190/1.1468626 – ident: e_1_2_6_31_1 doi: 10.1109/TSP.2017.2690524 – ident: e_1_2_6_13_1 doi: 10.1190/1.1444852 – ident: e_1_2_6_19_1 doi: 10.1190/geo2011-0399.1 – ident: e_1_2_6_3_1 doi: 10.1007/BF02532251 – volume: 9 start-page: 601 year: 2015 ident: e_1_2_6_42_1 article-title: Parallel matrix factorization for low‐rank tensor completion publication-title: American Institute of Mathematical Sciences – ident: e_1_2_6_40_1 doi: 10.1190/1.3484195 – ident: e_1_2_6_8_1 doi: 10.1002/cem.1236 – ident: e_1_2_6_15_1 doi: 10.1190/1.2799517 – ident: e_1_2_6_12_1 doi: 10.1190/1.1893128 – ident: e_1_2_6_38_1 doi: 10.1190/INT-2018-0224.1 – ident: e_1_2_6_10_1 doi: 10.1190/segam2015-5842738.1 – ident: e_1_2_6_9_1 doi: 10.1111/j.1365-2478.2009.00846.x – ident: e_1_2_6_16_1 doi: 10.1190/geo2013-0168.1 – ident: e_1_2_6_30_1 doi: 10.1109/78.651165 |
| SSID | ssj0030554 ssj0017384 |
| Score | 2.2505877 |
| Snippet | ABSTRACT
Tensor algebra provides a robust framework for multi‐dimensional seismic data processing. A low‐rank tensor can represent a noise‐free seismic data... Tensor algebra provides a robust framework for multi‐dimensional seismic data processing. A low‐rank tensor can represent a noise‐free seismic data volume.... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 872 |
| SubjectTerms | Additives Algorithms Attenuation Computing costs Data processing Decomposition Dimensional analysis Filtration Least squares method Mathematical analysis Multi‐linear algebra Noise Noise reduction Random noise Randomization Seismic data processing Signal processing Singular value decomposition Spectrum analysis Tensors |
| Title | Random noise attenuation via the randomized canonical polyadic decomposition |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2478.12894 https://www.proquest.com/docview/2354042441 |
| Volume | 68 |
| WOSCitedRecordID | wos000513102000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-2478 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017384 issn: 0016-8025 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60VdCDj6pYX-zBg5dIHptN9ihq66GUUqz0Fja7EwhoW5paqL_e3U1aqxcRvCWQTMK8Z3fmW4BrL8ZAKeY5WrqZQxkLHYEGHk_q-JeqOArsDv5LJ-p24-GQ96puQjMLU-JDrBbcjGVYf20MXKTFmpGX_Vk0im-1i-V0E-pmtCqsQf2h3xp0VlsJUWAmMcsbA29V4jJ7BobXDyuwH9Pb84Pe9zj1lXyup7A2BrX2_-HvD2CvSkDJXakxh7CBowbsrsESNmC7bY_7XRxBpy9GavxGRuO8QGKgOEclNDiZ54Lo3JFM7QP5ByqihTS2U5ZkMn5dCJVLotC0rFd9YccwaD0-3z851fkLjvB1WeZ4Kfq-ZIFWNhor5mKa8ZCmGeMceRwwnStlyqXCR-lzyoTCKOMy5ogi9JRO9E6gpj-Mp0CU56KkUnsPhhRlkLpMU4uFkIIqTwVNuFlyO5mUMBvJsjwxrEoMqxLLqiZcLKWRVPZWJL5ZvjIze14TSr7_RiZp9_r24uyvL5zDjm-KbtuIdgG12fQdL2FLzmd5Mb2q1O8Ta6rXLA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60KurBR1Wszz148BLJY7vJHkWtirFIqdJb2OxOIKCptCror3d3k9boRQRvCSSTMLPz3JlvAY68CAOlmOdo6WYOZaztCDTweFL7v1RFYWB38B_isNuNBgNen4Up8SGmBTejGdZeGwU3BemalpcNWjSMTrSN5XQW5ijT6tKAufNe5z6e7iWEgRnFLG8MvlUJzOwZHF6_XaH9mOaeH_S-O6qv6LMew1on1Fn9j99fg5UqBCWn5ZpZhxksmrBcAyZswsKlPfD3fQPinijU8IkUw3yMxIBxFiU4OHnLBdHRIxnZB_IPVESLaWjnLMnz8PFdqFwShaZpveoM24T7zkX_7MqpTmBwhK8TM8dL0fclC_Ryo5FiLqYZb9M0Y5wjjwKmo6VMuVT4KH1OmVAYZlxGHFG0PaVDvS1o6A_jNhDluSip1PaDIUUZpC7T1CIhpKDKU0ELjifsTp5LoI1kkqAYViWGVYllVQv2JuJIKo0bJ74pYJmpPa8FJeN_I5Nc3vXsxc5fXziExav-bZzE192bXVjyTQpu29L2oPEyesV9mJdvL_l4dFCtxU9mm9sc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFH_opqIHv8Xp1Bw8eKmsaZo2R1E3xTFkOPFW0uQVCrqNTYX515uk3ZxeRPDWQvta3vdL3vsF4NSPMdCa-56RbuYxzkNPooXHUyb-pTqOAreD_9iOOp346UnMz8IU-BCzBTdrGc5fWwPHoc7mrLxo0GJRfG58rGCLUGWhCGkFqlfdZq8920uIAjuKWdxYfKsCmNm3OLw0LNF-bHPPD3rfA9VX9jmfw7og1Nz4j9_fhPUyBSUXhc5swQL2t2FtDphwG5Zb7sDfyQ60u7KvBy-kP8jHSCwYZ78AByfvuSQmeyQj90D-gZoYMQ3cnCUZDp4nUueKaLRN62Vn2C70mtcPlzdeeQKDJ6kpzDw_RUoVD4y6sVjzBqaZCFmacSFQxAE32VKmG0xSVFQwLjVGmVCxQJShr02qtwcV82HcB6L9BiqmjP_gyFAFaYMbarGUSjLt66AGZ1N2J8MCaCOZFiiWVYllVeJYVYP6VBxJaXHjhNoFLDu159egYPxvZJLWfdddHPz1hRNYub9qJu3bzt0hrFJbgbuutDpUXkdveARL6v01H4-OS1X8BCXc2pc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+noise+attenuation+via+the+randomized+canonical+polyadic+decomposition&rft.jtitle=Geophysical+Prospecting&rft.au=Gao%2C+Wenlei&rft.au=Sacchi%2C+Mauricio+D.&rft.date=2020-03-01&rft.issn=0016-8025&rft.eissn=1365-2478&rft.volume=68&rft.issue=3&rft.spage=872&rft.epage=891&rft_id=info:doi/10.1111%2F1365-2478.12894&rft.externalDBID=10.1111%252F1365-2478.12894&rft.externalDocID=GPR12894 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-8025&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-8025&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-8025&client=summon |