Random noise attenuation via the randomized canonical polyadic decomposition

ABSTRACT Tensor algebra provides a robust framework for multi‐dimensional seismic data processing. A low‐rank tensor can represent a noise‐free seismic data volume. Additive random noise will increase the rank of the tensor. Hence, tensor rank‐reduction techniques can be used to filter random noise....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Geophysical Prospecting Ročník 68; číslo 3; s. 872 - 891
Hlavní autoři: Gao, Wenlei, Sacchi, Mauricio D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Houten Wiley Subscription Services, Inc 01.03.2020
Témata:
ISSN:0016-8025, 1365-2478
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ABSTRACT Tensor algebra provides a robust framework for multi‐dimensional seismic data processing. A low‐rank tensor can represent a noise‐free seismic data volume. Additive random noise will increase the rank of the tensor. Hence, tensor rank‐reduction techniques can be used to filter random noise. Our filtering method adopts the Candecomp/Parafac decomposition to approximates a N‐dimensional seismic data volume via the superposition of rank‐one tensors. Similar to the singular value decomposition for matrices, a low‐rank Candecomp/Parafac decomposition can capture the signal and exclude random noise in situations where a low‐rank tensor can represent the ideal noise‐free seismic volume. The alternating least squares method is adopted to compute the Candecomp/Parafac decomposition with a provided target rank. This method involves solving a series of highly over‐determined linear least‐squares subproblems. To improve the efficiency of the alternating least squares algorithm, we uniformly randomly sample equations of the linear least‐squares subproblems to reduce the size of the problem significantly. The computational overhead is further reduced by avoiding unfolding and folding large dense tensors. We investigate the applicability of the randomized Candecomp/Parafac decomposition for incoherent noise attenuation via experiments conducted on a synthetic dataset and field data seismic volumes. We also compare the proposed algorithm (randomized Candecomp/Parafac decomposition) against multi‐dimensional singular spectrum analysis and classical f−xy prediction filtering. We conclude the proposed approach can achieve slightly better denoising performance in terms of signal‐to‐noise ratio enhancement than traditional methods, but with a less computational cost.
AbstractList Tensor algebra provides a robust framework for multi‐dimensional seismic data processing. A low‐rank tensor can represent a noise‐free seismic data volume. Additive random noise will increase the rank of the tensor. Hence, tensor rank‐reduction techniques can be used to filter random noise. Our filtering method adopts the Candecomp/Parafac decomposition to approximates a N‐dimensional seismic data volume via the superposition of rank‐one tensors. Similar to the singular value decomposition for matrices, a low‐rank Candecomp/Parafac decomposition can capture the signal and exclude random noise in situations where a low‐rank tensor can represent the ideal noise‐free seismic volume. The alternating least squares method is adopted to compute the Candecomp/Parafac decomposition with a provided target rank. This method involves solving a series of highly over‐determined linear least‐squares subproblems. To improve the efficiency of the alternating least squares algorithm, we uniformly randomly sample equations of the linear least‐squares subproblems to reduce the size of the problem significantly. The computational overhead is further reduced by avoiding unfolding and folding large dense tensors. We investigate the applicability of the randomized Candecomp/Parafac decomposition for incoherent noise attenuation via experiments conducted on a synthetic dataset and field data seismic volumes. We also compare the proposed algorithm (randomized Candecomp/Parafac decomposition) against multi‐dimensional singular spectrum analysis and classical f−xy prediction filtering. We conclude the proposed approach can achieve slightly better denoising performance in terms of signal‐to‐noise ratio enhancement than traditional methods, but with a less computational cost.
ABSTRACT Tensor algebra provides a robust framework for multi‐dimensional seismic data processing. A low‐rank tensor can represent a noise‐free seismic data volume. Additive random noise will increase the rank of the tensor. Hence, tensor rank‐reduction techniques can be used to filter random noise. Our filtering method adopts the Candecomp/Parafac decomposition to approximates a N‐dimensional seismic data volume via the superposition of rank‐one tensors. Similar to the singular value decomposition for matrices, a low‐rank Candecomp/Parafac decomposition can capture the signal and exclude random noise in situations where a low‐rank tensor can represent the ideal noise‐free seismic volume. The alternating least squares method is adopted to compute the Candecomp/Parafac decomposition with a provided target rank. This method involves solving a series of highly over‐determined linear least‐squares subproblems. To improve the efficiency of the alternating least squares algorithm, we uniformly randomly sample equations of the linear least‐squares subproblems to reduce the size of the problem significantly. The computational overhead is further reduced by avoiding unfolding and folding large dense tensors. We investigate the applicability of the randomized Candecomp/Parafac decomposition for incoherent noise attenuation via experiments conducted on a synthetic dataset and field data seismic volumes. We also compare the proposed algorithm (randomized Candecomp/Parafac decomposition) against multi‐dimensional singular spectrum analysis and classical f−xy prediction filtering. We conclude the proposed approach can achieve slightly better denoising performance in terms of signal‐to‐noise ratio enhancement than traditional methods, but with a less computational cost.
Tensor algebra provides a robust framework for multi‐dimensional seismic data processing. A low‐rank tensor can represent a noise‐free seismic data volume. Additive random noise will increase the rank of the tensor. Hence, tensor rank‐reduction techniques can be used to filter random noise. Our filtering method adopts the Candecomp/Parafac decomposition to approximates a N ‐dimensional seismic data volume via the superposition of rank‐one tensors. Similar to the singular value decomposition for matrices, a low‐rank Candecomp/Parafac decomposition can capture the signal and exclude random noise in situations where a low‐rank tensor can represent the ideal noise‐free seismic volume. The alternating least squares method is adopted to compute the Candecomp/Parafac decomposition with a provided target rank. This method involves solving a series of highly over‐determined linear least‐squares subproblems. To improve the efficiency of the alternating least squares algorithm, we uniformly randomly sample equations of the linear least‐squares subproblems to reduce the size of the problem significantly. The computational overhead is further reduced by avoiding unfolding and folding large dense tensors. We investigate the applicability of the randomized Candecomp/Parafac decomposition for incoherent noise attenuation via experiments conducted on a synthetic dataset and field data seismic volumes. We also compare the proposed algorithm (randomized Candecomp/Parafac decomposition) against multi‐dimensional singular spectrum analysis and classical prediction filtering. We conclude the proposed approach can achieve slightly better denoising performance in terms of signal‐to‐noise ratio enhancement than traditional methods, but with a less computational cost.
Author Gao, Wenlei
Sacchi, Mauricio D.
Author_xml – sequence: 1
  givenname: Wenlei
  orcidid: 0000-0002-5916-1779
  surname: Gao
  fullname: Gao, Wenlei
  email: wgao1@ualberta.ca
  organization: University of Alberta
– sequence: 2
  givenname: Mauricio D.
  surname: Sacchi
  fullname: Sacchi, Mauricio D.
  organization: University of Alberta
BookMark eNqFkMFLwzAUh4NMcJuevQY8d0vSJGuOMnQTBsrQc8iSV8zoktp0yvzrbVfx6rs8eHzf-8FvgkYhBkDolpIZ7WZOcykyxhfFjLJC8Qs0_ruM0JgQKrOCMHGFJintCcmJEHyMNlsTXDzgEH0CbNoWwtG0Pgb86Q1u3wE3Z8B_g8PWdJnemgrXsToZ5y12YOOhjsn3zjW6LE2V4OZ3T9Hb48Prcp1tnldPy_tNZphiPKM7YMzKHIzjhZMEdqUSfFdKpUAVuZSElI5ww8AyxaVxsCiVLRSAEdRRmU_R3fC3buLHEVKr9_HYhC5Ss1xwwhnntKPmA2WbmFIDpa4bfzDNSVOi-8p0X5DuC9LnyjpDDMaXr-D0H65XL9vB-wHqUnA7
Cites_doi 10.1190/1.1836829
10.1190/1.3552706
10.1109/TSP.2015.2458789
10.1137/17M1112303
10.1287/ijoc.2014.0623
10.1109/TIP.2002.1014998
10.1109/LGRS.2019.2895702
10.1190/1.1567245
10.1137/07070111X
10.1190/segam2015-5884504.1
10.1109/TSP.2013.2269903
10.1190/1.1822843
10.1190/1.2954035
10.1190/1.1443845
10.1190/1.3513645
10.1190/1.1894168
10.1073/pnas.0804869105
10.1190/1.1887383
10.1109/TIP.2017.2662206
10.1190/1.1443920
10.1071/EG992051
10.1190/1.1468626
10.1109/TSP.2017.2690524
10.1190/1.1444852
10.1190/geo2011-0399.1
10.1007/BF02532251
10.1190/1.3484195
10.1002/cem.1236
10.1190/1.2799517
10.1190/1.1893128
10.1190/INT-2018-0224.1
10.1190/segam2015-5842738.1
10.1111/j.1365-2478.2009.00846.x
10.1190/geo2013-0168.1
10.1109/78.651165
ContentType Journal Article
Copyright 2019 European Association of Geoscientists & Engineers
2020 European Association of Geoscientists & Engineers
Copyright_xml – notice: 2019 European Association of Geoscientists & Engineers
– notice: 2020 European Association of Geoscientists & Engineers
DBID AAYXX
CITATION
8FD
F1W
FR3
H96
KR7
L.G
DOI 10.1111/1365-2478.12894
DatabaseName CrossRef
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Civil Engineering Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1365-2478
EndPage 891
ExternalDocumentID 10_1111_1365_2478_12894
GPR12894
Genre article
GroupedDBID -~X
1OB
1OC
ALMA_UNASSIGNED_HOLDINGS
BDRZF
BRZYM
DDYGU
FZ0
AAYXX
CITATION
PALCI
8FD
F1W
FR3
H96
KR7
L.G
ID FETCH-LOGICAL-a2924-1be22c63ead48d60ebf954bf699e9836600fd04a2ec2946ade7f9c89eea51d163
IEDL.DBID DRFUL
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000513102000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-8025
IngestDate Mon Jun 30 08:25:13 EDT 2025
Sat Nov 29 02:58:43 EST 2025
Sat Aug 24 01:07:49 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a2924-1be22c63ead48d60ebf954bf699e9836600fd04a2ec2946ade7f9c89eea51d163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5916-1779
PQID 2354042441
PQPubID 1066348
PageCount 20
ParticipantIDs proquest_journals_2354042441
crossref_primary_10_1111_1365_2478_12894
wiley_primary_10_1111_1365_2478_12894_GPR12894
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace Houten
PublicationPlace_xml – name: Houten
PublicationTitle Geophysical Prospecting
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 23
2019; 7
2010; 75
2010; 58
2017; 26
2011
2010
2000; 65
2004; 69
2013; 61
2017; 65
2002; 11
2019; 16
2011; 76
1995
2008; 105
1994
1970
2007; 73
2015; 9
2012; 77
1998; 46
2018; 39
1995; 60
2015; 28
2009; 51
2015; 27
2013; 79
2002; 67
2015; 63
1969; 21
2008; 27
2001; 9
2003; 68
1986
2019
1984
2015
1992; 23
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
Xu Y. (e_1_2_6_42_1) 2015; 9
e_1_2_6_40_1
Wang Y. (e_1_2_6_41_1) 2015; 28
Sacchi M.D. (e_1_2_6_28_1) 2001; 9
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 60
  start-page: 1887
  year: 1995
  end-page: 1896
  article-title: Lateral prediction for noise attenuation by t‐x and f‐x techniques
  publication-title: Geophysics
– volume: 27
  start-page: 924
  year: 2008
  end-page: 938
  article-title: Changing the mindset in seismic data acquisition
  publication-title: The Leading Edge
– volume: 23
  start-page: 51
  year: 1992
  end-page: 55
  article-title: Random noise reduction by FXY prediction filtering
  publication-title: Exploration Geophysics
– year: 2011
– volume: 26
  start-page: 3142
  year: 2017
  end-page: 3155
  article-title: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising
  publication-title: IEEE Transactions on Image Processing
– volume: 65
  start-page: 1641
  year: 2000
  end-page: 1653
  article-title: Noncausal spatial prediction filtering for random noise reduction on 3‐D poststack data
  publication-title: Geophysics
– volume: 79
  start-page: V1
  year: 2013
  end-page: V11
  article-title: Simultaneous source separation using a robust Radon transform
  publication-title: Geophysics
– volume: 58
  start-page: 441
  year: 2010
  end-page: 453
  article-title: Time‐frequency seismic data de‐noising
  publication-title: Geophysical Prospecting
– volume: 28
  start-page: 991
  year: 2015
  end-page: 999
  article-title: Fast and guaranteed tensor decomposition via sketching
  publication-title: Advances in Neural Information Processing Systems
– volume: 65
  start-page: 3551
  year: 2017
  end-page: 3582
  article-title: Tensor decomposition for signal processing and machine learning
  publication-title: IEEE Transactions on Signal Processing
– volume: 105
  start-page: 13212
  year: 2008
  end-page: 13217
  article-title: A fast randomized algorithm for overdetermined linear least‐squares regression
  publication-title: Proceedings of the National Academy of Sciences
– volume: 16
  start-page: 1314
  year: 2019
  end-page: 1318
  article-title: Residual learning of deep convolutional neural network for seismic random noise attenuation
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 9
  start-page: 601
  year: 2015
  end-page: 624
  article-title: Parallel matrix factorization for low‐rank tensor completion
  publication-title: American Institute of Mathematical Sciences
– volume: 11
  start-page: 670
  year: 2002
  end-page: 684
  article-title: The curvelet transform for image denoising
  publication-title: IEEE Transactions on Image Processing
– volume: 73
  start-page: A1
  year: 2007
  end-page: A5
  article-title: Curvelet‐based seismic data processing: a multiscale and nonlinear approach
  publication-title: Geophysics
– volume: 60
  start-page: 1169
  year: 1995
  end-page: 1177
  article-title: High‐resolution velocity gathers and offset space reconstruction
  publication-title: Geophysics
– start-page: 711
  year: 1995
  end-page: 714
– volume: 23
  start-page: 393
  year: 2009
  end-page: 405
  article-title: Tensor decompositions, alternating least squares and other tales
  publication-title: Journal of Chemometrics
– start-page: 279
  year: 1986
  end-page: 281
– volume: 67
  start-page: 644
  year: 2002
  end-page: 656
  article-title: Accurate interpolation with high‐resolution time‐variant Radon transforms
  publication-title: Geophysics
– volume: 9
  start-page: 185
  year: 2001
  end-page: 198
  article-title: ARMA formulation of f‐x prediction error filters and projection filters
  publication-title: Journal of Seismic Exploration
– start-page: 1576
  year: 1994
  end-page: 1579
– start-page: 525
  year: 1984
  end-page: 527
– start-page: 3784
  year: 2015
  end-page: 3788
– volume: 63
  start-page: 5939
  year: 2015
  end-page: 5950
  article-title: Tensor deflation for CANDECOMP/PARAFAC ‐ Part II: Initialization and error analysis
  publication-title: IEEE Transactions on Signal Processing
– volume: 46
  start-page: 31
  year: 1998
  end-page: 38
  article-title: Interpolation and extrapolation using a high‐resolution discrete Fourier transform
  publication-title: IEEE Transactions on Signal Processing
– volume: 68
  start-page: 751
  year: 2003
  end-page: 759
  article-title: F‐xy eigenimage noise suppression
  publication-title: Geophysics
– volume: 61
  start-page: 4834
  year: 2013
  end-page: 4846
  article-title: Fast alternating LS algorithms for high order CANDECOMP/PARAFAC tensor factorizations
  publication-title: IEEE Transactions on Signal Processing
– volume: 7
  start-page: SE131
  issue: 3
  year: 2019
  end-page: SE139
  article-title: Applying machine learning to 3D seismic image denoising and enhancement
  publication-title: Interpretation
– volume: 21
  start-page: 243
  year: 1969
  end-page: 247
  article-title: Fitting autoregressive models for prediction
  publication-title: Annals of the Institute of Statistical Mathematics
– volume: 77
  start-page: V113
  year: 2012
  end-page: V122
  article-title: A tensor higher‐order singular value decomposition for prestack seismic data noise reduction and interpolation
  publication-title: Geophysics
– volume: 27
  start-page: 238
  year: 2015
  end-page: 248
  article-title: Computing in operations research using Julia
  publication-title: INFORMS Journal on Computing
– volume: 76
  start-page: V25
  issue: 3
  year: 2011
  end-page: V32
  article-title: Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis
  publication-title: Geophysics
– start-page: 3829
  year: 2010
  end-page: 3833
– year: 1970
– volume: 69
  start-page: 1560
  year: 2004
  end-page: 1568
  article-title: Minimum weighted norm interpolation of seismic records
  publication-title: Geophysics
– volume: 75
  start-page: WB225
  year: 2010
  end-page: WB234
  article-title: Seismic data interpolation by greedy local Radon transform
  publication-title: Geophysics
– year: 2019
– volume: 39
  start-page: 876
  year: 2018
  end-page: 901
  article-title: A practical randomized CP tensor decomposition
  publication-title: SIAM Journal on Matrix Analysis and Applications
– volume: 51
  start-page: 455
  year: 2009
  end-page: 500
  article-title: Tensor decompositions and applications
  publication-title: SIAM Review
– year: 2015
– ident: e_1_2_6_20_1
  doi: 10.1190/1.1836829
– ident: e_1_2_6_22_1
  doi: 10.1190/1.3552706
– ident: e_1_2_6_24_1
  doi: 10.1109/TSP.2015.2458789
– ident: e_1_2_6_4_1
  doi: 10.1137/17M1112303
– ident: e_1_2_6_21_1
  doi: 10.1287/ijoc.2014.0623
– ident: e_1_2_6_34_1
  doi: 10.1109/TIP.2002.1014998
– ident: e_1_2_6_39_1
  doi: 10.1109/LGRS.2019.2895702
– ident: e_1_2_6_37_1
  doi: 10.1190/1.1567245
– ident: e_1_2_6_17_1
  doi: 10.1137/07070111X
– ident: e_1_2_6_18_1
– ident: e_1_2_6_27_1
  doi: 10.1190/segam2015-5884504.1
– ident: e_1_2_6_23_1
  doi: 10.1109/TSP.2013.2269903
– ident: e_1_2_6_32_1
  doi: 10.1190/1.1822843
– ident: e_1_2_6_5_1
  doi: 10.1190/1.2954035
– ident: e_1_2_6_11_1
– ident: e_1_2_6_14_1
– ident: e_1_2_6_29_1
  doi: 10.1190/1.1443845
– volume: 9
  start-page: 185
  year: 2001
  ident: e_1_2_6_28_1
  article-title: ARMA formulation of f‐x prediction error filters and projection filters
  publication-title: Journal of Seismic Exploration
– ident: e_1_2_6_36_1
  doi: 10.1190/1.3513645
– ident: e_1_2_6_6_1
  doi: 10.1190/1.1894168
– ident: e_1_2_6_26_1
  doi: 10.1073/pnas.0804869105
– ident: e_1_2_6_33_1
  doi: 10.1190/1.1887383
– ident: e_1_2_6_43_1
  doi: 10.1109/TIP.2017.2662206
– volume: 28
  start-page: 991
  year: 2015
  ident: e_1_2_6_41_1
  article-title: Fast and guaranteed tensor decomposition via sketching
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_6_2_1
  doi: 10.1190/1.1443920
– ident: e_1_2_6_25_1
– ident: e_1_2_6_7_1
  doi: 10.1071/EG992051
– ident: e_1_2_6_35_1
  doi: 10.1190/1.1468626
– ident: e_1_2_6_31_1
  doi: 10.1109/TSP.2017.2690524
– ident: e_1_2_6_13_1
  doi: 10.1190/1.1444852
– ident: e_1_2_6_19_1
  doi: 10.1190/geo2011-0399.1
– ident: e_1_2_6_3_1
  doi: 10.1007/BF02532251
– volume: 9
  start-page: 601
  year: 2015
  ident: e_1_2_6_42_1
  article-title: Parallel matrix factorization for low‐rank tensor completion
  publication-title: American Institute of Mathematical Sciences
– ident: e_1_2_6_40_1
  doi: 10.1190/1.3484195
– ident: e_1_2_6_8_1
  doi: 10.1002/cem.1236
– ident: e_1_2_6_15_1
  doi: 10.1190/1.2799517
– ident: e_1_2_6_12_1
  doi: 10.1190/1.1893128
– ident: e_1_2_6_38_1
  doi: 10.1190/INT-2018-0224.1
– ident: e_1_2_6_10_1
  doi: 10.1190/segam2015-5842738.1
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1365-2478.2009.00846.x
– ident: e_1_2_6_16_1
  doi: 10.1190/geo2013-0168.1
– ident: e_1_2_6_30_1
  doi: 10.1109/78.651165
SSID ssj0030554
ssj0017384
Score 2.2505877
Snippet ABSTRACT Tensor algebra provides a robust framework for multi‐dimensional seismic data processing. A low‐rank tensor can represent a noise‐free seismic data...
Tensor algebra provides a robust framework for multi‐dimensional seismic data processing. A low‐rank tensor can represent a noise‐free seismic data volume....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 872
SubjectTerms Additives
Algorithms
Attenuation
Computing costs
Data processing
Decomposition
Dimensional analysis
Filtration
Least squares method
Mathematical analysis
Multi‐linear algebra
Noise
Noise reduction
Random noise
Randomization
Seismic data processing
Signal processing
Singular value decomposition
Spectrum analysis
Tensors
Title Random noise attenuation via the randomized canonical polyadic decomposition
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2478.12894
https://www.proquest.com/docview/2354042441
Volume 68
WOSCitedRecordID wos000513102000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2478
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017384
  issn: 0016-8025
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60VdCDj6pYX-zBg5dIHptN9ihq66GUUqz0Fja7EwhoW5paqL_e3U1aqxcRvCWQTMK8Z3fmW4BrL8ZAKeY5WrqZQxkLHYEGHk_q-JeqOArsDv5LJ-p24-GQ96puQjMLU-JDrBbcjGVYf20MXKTFmpGX_Vk0im-1i-V0E-pmtCqsQf2h3xp0VlsJUWAmMcsbA29V4jJ7BobXDyuwH9Pb84Pe9zj1lXyup7A2BrX2_-HvD2CvSkDJXakxh7CBowbsrsESNmC7bY_7XRxBpy9GavxGRuO8QGKgOEclNDiZ54Lo3JFM7QP5ByqihTS2U5ZkMn5dCJVLotC0rFd9YccwaD0-3z851fkLjvB1WeZ4Kfq-ZIFWNhor5mKa8ZCmGeMceRwwnStlyqXCR-lzyoTCKOMy5ogi9JRO9E6gpj-Mp0CU56KkUnsPhhRlkLpMU4uFkIIqTwVNuFlyO5mUMBvJsjwxrEoMqxLLqiZcLKWRVPZWJL5ZvjIze14TSr7_RiZp9_r24uyvL5zDjm-KbtuIdgG12fQdL2FLzmd5Mb2q1O8Ta6rXLA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60KurBR1Wszz148BLJY7vJHkWtirFIqdJb2OxOIKCptCror3d3k9boRQRvCSSTMLPz3JlvAY68CAOlmOdo6WYOZaztCDTweFL7v1RFYWB38B_isNuNBgNen4Up8SGmBTejGdZeGwU3BemalpcNWjSMTrSN5XQW5ijT6tKAufNe5z6e7iWEgRnFLG8MvlUJzOwZHF6_XaH9mOaeH_S-O6qv6LMew1on1Fn9j99fg5UqBCWn5ZpZhxksmrBcAyZswsKlPfD3fQPinijU8IkUw3yMxIBxFiU4OHnLBdHRIxnZB_IPVESLaWjnLMnz8PFdqFwShaZpveoM24T7zkX_7MqpTmBwhK8TM8dL0fclC_Ryo5FiLqYZb9M0Y5wjjwKmo6VMuVT4KH1OmVAYZlxGHFG0PaVDvS1o6A_jNhDluSip1PaDIUUZpC7T1CIhpKDKU0ELjifsTp5LoI1kkqAYViWGVYllVQv2JuJIKo0bJ74pYJmpPa8FJeN_I5Nc3vXsxc5fXziExav-bZzE192bXVjyTQpu29L2oPEyesV9mJdvL_l4dFCtxU9mm9sc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFH_opqIHv8Xp1Bw8eKmsaZo2R1E3xTFkOPFW0uQVCrqNTYX515uk3ZxeRPDWQvta3vdL3vsF4NSPMdCa-56RbuYxzkNPooXHUyb-pTqOAreD_9iOOp346UnMz8IU-BCzBTdrGc5fWwPHoc7mrLxo0GJRfG58rGCLUGWhCGkFqlfdZq8920uIAjuKWdxYfKsCmNm3OLw0LNF-bHPPD3rfA9VX9jmfw7og1Nz4j9_fhPUyBSUXhc5swQL2t2FtDphwG5Zb7sDfyQ60u7KvBy-kP8jHSCwYZ78AByfvuSQmeyQj90D-gZoYMQ3cnCUZDp4nUueKaLRN62Vn2C70mtcPlzdeeQKDJ6kpzDw_RUoVD4y6sVjzBqaZCFmacSFQxAE32VKmG0xSVFQwLjVGmVCxQJShr02qtwcV82HcB6L9BiqmjP_gyFAFaYMbarGUSjLt66AGZ1N2J8MCaCOZFiiWVYllVeJYVYP6VBxJaXHjhNoFLDu159egYPxvZJLWfdddHPz1hRNYub9qJu3bzt0hrFJbgbuutDpUXkdveARL6v01H4-OS1X8BCXc2pc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+noise+attenuation+via+the+randomized+canonical+polyadic+decomposition&rft.jtitle=Geophysical+Prospecting&rft.au=Gao%2C+Wenlei&rft.au=Sacchi%2C+Mauricio+D.&rft.date=2020-03-01&rft.issn=0016-8025&rft.eissn=1365-2478&rft.volume=68&rft.issue=3&rft.spage=872&rft.epage=891&rft_id=info:doi/10.1111%2F1365-2478.12894&rft.externalDBID=10.1111%252F1365-2478.12894&rft.externalDocID=GPR12894
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-8025&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-8025&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-8025&client=summon