Residual-INR: Communication Efficient on-Device Learning Using Implicit Neural Representation
Edge computing is a distributed computing paradigm that collects and processes data at or near the source of data generation. The on-device learning at edge relies on device-to-device wireless communication to facilitate real-time data sharing and collaborative decision-making among multiple devices...
Uloženo v:
| Vydáno v: | Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design s. 1 - 9 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
ACM
27.10.2024
|
| Témata: | |
| ISSN: | 1558-2434 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Edge computing is a distributed computing paradigm that collects and processes data at or near the source of data generation. The on-device learning at edge relies on device-to-device wireless communication to facilitate real-time data sharing and collaborative decision-making among multiple devices. This significantly improves the adaptability of the edge computing system to the changing environments. However, as the scale of the edge computing system is getting larger, communication among devices is becoming the bottleneck because of the limited bandwidth of wireless communication leads to large data transfer latency. To reduce the amount of device-to-device data transmission and accelerate on-device learning, in this paper, we propose Residual-INR, a fog computing-based communication-efficient on-device learning framework by utilizing implicit neural representation (INR) to compress images/videos into neural network weights. Residual-INR enhances data transfer efficiency by collecting JPEG images from edge devices, compressing them into INR format at the fog node, and redistributing them for on-device learning. By using a smaller INR for full image encoding and a separate object INR for high-quality object region reconstruction through residual encoding, our technique can reduce the encoding redundancy while maintaining the object quality. Residual-INR is a promising solution for edge on-device learning because it reduces data transmission by up to 5.16 \times across a network of 10 edge devices. It also facilitates CPU-free accelerated on-device learning, achieving up to 2.9 \times speedup without sacrificing accuracy. Our code is available at: https://github.com/sharc-lab/Residual-INR. |
|---|---|
| AbstractList | Edge computing is a distributed computing paradigm that collects and processes data at or near the source of data generation. The on-device learning at edge relies on device-to-device wireless communication to facilitate real-time data sharing and collaborative decision-making among multiple devices. This significantly improves the adaptability of the edge computing system to the changing environments. However, as the scale of the edge computing system is getting larger, communication among devices is becoming the bottleneck because of the limited bandwidth of wireless communication leads to large data transfer latency. To reduce the amount of device-to-device data transmission and accelerate on-device learning, in this paper, we propose Residual-INR, a fog computing-based communication-efficient on-device learning framework by utilizing implicit neural representation (INR) to compress images/videos into neural network weights. Residual-INR enhances data transfer efficiency by collecting JPEG images from edge devices, compressing them into INR format at the fog node, and redistributing them for on-device learning. By using a smaller INR for full image encoding and a separate object INR for high-quality object region reconstruction through residual encoding, our technique can reduce the encoding redundancy while maintaining the object quality. Residual-INR is a promising solution for edge on-device learning because it reduces data transmission by up to 5.16 \times across a network of 10 edge devices. It also facilitates CPU-free accelerated on-device learning, achieving up to 2.9 \times speedup without sacrificing accuracy. Our code is available at: https://github.com/sharc-lab/Residual-INR. |
| Author | Chen, Hanqiu Hao, Cong Subedi, Pradeep Yao, Xuebin |
| Author_xml | – sequence: 1 givenname: Hanqiu surname: Chen fullname: Chen, Hanqiu email: hanqiu.chen@gatech.edu organization: Georgia Institute of Technology – sequence: 2 givenname: Xuebin surname: Yao fullname: Yao, Xuebin email: xuebin.yao@samsung.com organization: Samsung Semiconductor, Inc – sequence: 3 givenname: Pradeep surname: Subedi fullname: Subedi, Pradeep email: prad.subedi@samsung.com organization: Samsung Semiconductor, Inc – sequence: 4 givenname: Cong surname: Hao fullname: Hao, Cong email: callie.hao@gatech.edu organization: Georgia Institute of Technology |
| BookMark | eNotjM1Kw0AYRUdRsNau3biYF0idb_7HndSqhVIh2KWU6eSLDCSTkB_BtzdVN_dszj3X5CI1CQm5BbYEkOpeaKOV0MsTtRFnZOGMs5IxA8wYcU5moJTNuBTyiiz6Ph6ZZmoSpJ2Rjxz7WIy-yja7_IGumroeUwx-iE2i67KMIWIaaJOyJ_yKAekWfZdi-qT7_rSbuq0mZ6A7HDtf0RzbDvvp8lu4IZelr3pc_HNO9s_r99Vrtn172awet5nnDoYsmIJJDYhSKQhgCpBQeHlEHpgtTdCOg3fSOK4F2kk-2tIJ6wSoSS2YmJO7v25ExEPbxdp33wcA4JoLIX4AcelVTA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1145/3676536.3676673 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798400710773 |
| EISSN | 1558-2434 |
| EndPage | 9 |
| ExternalDocumentID | 11126233 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation grantid: ENG-ECCS2202310 funderid: 10.13039/100000001 – fundername: Samsung grantid: ENG-ECCS2202310 funderid: 10.13039/100004358 – fundername: Cisco grantid: ENG-ECCS2202310 funderid: 10.13039/100004351 |
| GroupedDBID | 6IE 6IF 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO FEDTE IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-a291t-c7d0461ee4551c17d141da4be2c08f7c6921a9479263e87d0b8f9389315d14d03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001479882200112&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Sep 03 07:09:38 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a291t-c7d0461ee4551c17d141da4be2c08f7c6921a9479263e87d0b8f9389315d14d03 |
| OpenAccessLink | https://dl.acm.org/doi/pdf/10.1145/3676536.3676673 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_11126233 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Oct.-27 |
| PublicationDateYYYYMMDD | 2024-10-27 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct.-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationTitle | Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design |
| PublicationTitleAbbrev | ICCAD |
| PublicationYear | 2024 |
| Publisher | ACM |
| Publisher_xml | – name: ACM |
| SSID | ssib060584048 ssj0020286 |
| Score | 1.9047651 |
| Snippet | Edge computing is a distributed computing paradigm that collects and processes data at or near the source of data generation. The on-device learning at edge... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Data transfer Edge computing Efficient Communication Fog Computing Image coding Image edge detection Implicit Neural Representation(INR) On-device Learning Pipelines Training Transform coding Video compression Videos Wireless communication |
| Title | Residual-INR: Communication Efficient on-Device Learning Using Implicit Neural Representation |
| URI | https://ieeexplore.ieee.org/document/11126233 |
| WOSCitedRecordID | wos001479882200112&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62eNCLr4pvcvC67eaxeXjVFnsppSj0IiXJZqUgW2m3_n4z2W2tBw-eEkIIIVl2JjPzfR9C92lmiIWojWMSolXSJFaBiAAzPC1U4RzNo9iEHI3UdKrHDVg9YmG897H4zHehG3P5-cKtIVTWI4B3oYy1UEtKUYO1Nh8PpPd4yrcphPCoV6Lh8iE86wEzWcZEF1oBKuk7YirRlgyO_rmLY9T5QeXh8dbenKA9X56iwx1CwTP0NvGriK5KhqPJA_6F_sD9yBYR1saLMnny8IvADb3qO46lA3gY68vnFQbODvOBJ7FOtoEnlR30Oui_PD4njYBCYqgmVeJkDnzq3vPgFzkic8JJbrj11KWqkE5oSozmUlPBvAqTrSo0eDAkC1PzlJ2jdrko_QXCTHErjQUHKSygrK5zfCL0gk_BskvUgZOafdYcGbPNIV39MX6NDsINcbACVN6gdrVc-1u0776q-Wp5F2_2G7UzogE |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oFNSLvyb-Ngev3ZombVKvurHhLGNM2EVGmqYykE62zr_fvKyb8-DBU0MJISQh7-W9930fwL0fKppi1EYzgdEqobxUoogAU9zPZa51kDmxCZEkcjSK-xVY3WFhjDGu-Mw0sOly-dlULzBU1qSIdwkY24adkNuHzxKutTo-mODjPl8nEeyzXkYVmw_lYRO5yUIWNfAboU76hpyKsybtw3_O4wjqP7g80l9bnGPYMsUJHGxQCp7C28DMHb7K6yaDB_IL_0Faji_Cjk2mhfdk8JIgFcHqO3HFA6TrKswnJUHWDvVBBq5StgIoFXV4bbeGjx2vklDwVBDT0tMiQ0Z1Y7j1jDQVGeU0Uzw1gfZlLnQUB1TFXMRBxIy0nVOZx-jD0NB2zXx2BrViWphzIEzyVKgUXSQ7gEzjZZYvsi3rVbDwAuq4UuPPJUvGeLVIl3_8v4O9zvClN-51k-cr2Le7xdEmBOIaauVsYW5gV3-Vk_ns1u3yN1PEpUg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Digest+of+technical+papers+-+IEEE%2FACM+International+Conference+on+Computer-Aided+Design&rft.atitle=Residual-INR%3A+Communication+Efficient+on-Device+Learning+Using+Implicit+Neural+Representation&rft.au=Chen%2C+Hanqiu&rft.au=Yao%2C+Xuebin&rft.au=Subedi%2C+Pradeep&rft.au=Hao%2C+Cong&rft.date=2024-10-27&rft.pub=ACM&rft.eissn=1558-2434&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1145%2F3676536.3676673&rft.externalDocID=11126233 |