Natural Language is Not Enough: Benchmarking Multi-Modal Generative AI for Verilog Generation
Natural language interfaces have exhibited considerable potential in the automation of Verilog generation derived from high-level specifications through the utilization of large language models, garnering significant attention. Nevertheless, this paper elucidates that visual representations contribu...
Gespeichert in:
| Veröffentlicht in: | Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design S. 1 - 9 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
ACM
27.10.2024
|
| Schlagworte: | |
| ISSN: | 1558-2434 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Natural language interfaces have exhibited considerable potential in the automation of Verilog generation derived from high-level specifications through the utilization of large language models, garnering significant attention. Nevertheless, this paper elucidates that visual representations contribute essential contextual information critical to design intent for hardware architectures possessing spatial complexity, potentially surpassing the efficacy of natural-language-only inputs. Expanding upon this premise, our paper introduces an open-source benchmark1 for multi-modal generative models tailored for Verilog synthesis from visual-linguistic inputs, addressing both singu-lar and complex modules. Additionally, we introduce an open-source visual and natural language Verilog query language framework to facilitate efficient and user-friendly multi-modal queries. To evaluate the performance of the proposed multi-modal hardware generative AI in Verilog generation tasks, we compare it with a popular method that relies solely on natural language. Our results demonstrate a sig-nificant accuracy improvement in the multi-modal generated Verilog compared to queries based solely on natural language. We hope to reveal a new approach to hardware design in the large- hardware-design-model era, thereby fostering a more diversified and productive approach to hardware design. |
|---|---|
| AbstractList | Natural language interfaces have exhibited considerable potential in the automation of Verilog generation derived from high-level specifications through the utilization of large language models, garnering significant attention. Nevertheless, this paper elucidates that visual representations contribute essential contextual information critical to design intent for hardware architectures possessing spatial complexity, potentially surpassing the efficacy of natural-language-only inputs. Expanding upon this premise, our paper introduces an open-source benchmark1 for multi-modal generative models tailored for Verilog synthesis from visual-linguistic inputs, addressing both singu-lar and complex modules. Additionally, we introduce an open-source visual and natural language Verilog query language framework to facilitate efficient and user-friendly multi-modal queries. To evaluate the performance of the proposed multi-modal hardware generative AI in Verilog generation tasks, we compare it with a popular method that relies solely on natural language. Our results demonstrate a sig-nificant accuracy improvement in the multi-modal generated Verilog compared to queries based solely on natural language. We hope to reveal a new approach to hardware design in the large- hardware-design-model era, thereby fostering a more diversified and productive approach to hardware design. |
| Author | Liang, Shengwen Chen, Zhirong Xu, Haobo Zhou, Yunhao Wang, Ying Han, Yinhe Wang, Mengdi Wang, Kun Li, Cangyuan Li, Huawei Chang, Kaiyan Zhu, Wenlong |
| Author_xml | – sequence: 1 givenname: Kaiyan surname: Chang fullname: Chang, Kaiyan email: changkaiyan@live.com organization: Institute of Computing Technology, Chinese Academy of Sciences,SKLP,Beijing,China – sequence: 2 givenname: Zhirong surname: Chen fullname: Chen, Zhirong organization: Institute of Computing Technology, Chinese Academy of Sciences,SKLP,Beijing,China – sequence: 3 givenname: Yunhao surname: Zhou fullname: Zhou, Yunhao organization: Institute of Computing Technology, Chinese Academy of Sciences,CICS,Beijing,China – sequence: 4 givenname: Wenlong surname: Zhu fullname: Zhu, Wenlong organization: Institute of Computing Technology, Chinese Academy of Sciences,SKLP,Beijing,China – sequence: 5 givenname: Kun surname: Wang fullname: Wang, Kun organization: Institute of Computing Technology, Chinese Academy of Sciences,SKLP,Beijing,China – sequence: 6 givenname: Haobo surname: Xu fullname: Xu, Haobo organization: Institute of Computing Technology, Chinese Academy of Sciences,SKLP,Beijing,China – sequence: 7 givenname: Cangyuan surname: Li fullname: Li, Cangyuan organization: Institute of Computing Technology, Chinese Academy of Sciences,SKLP,Beijing,China – sequence: 8 givenname: Mengdi surname: Wang fullname: Wang, Mengdi organization: Institute of Computing Technology, Chinese Academy of Sciences,SKLP,Beijing,China – sequence: 9 givenname: Shengwen surname: Liang fullname: Liang, Shengwen organization: Institute of Computing Technology, Chinese Academy of Sciences,SKLP,Beijing,China – sequence: 10 givenname: Huawei surname: Li fullname: Li, Huawei organization: Institute of Computing Technology, Chinese Academy of Sciences,SKLP,Beijing,China – sequence: 11 givenname: Yinhe surname: Han fullname: Han, Yinhe organization: Institute of Computing Technology, Chinese Academy of Sciences,SKLP,Beijing,China – sequence: 12 givenname: Ying surname: Wang fullname: Wang, Ying email: wangying2009@ict.ac.cn organization: Institute of Computing Technology, Chinese Academy of Sciences,SKLP,Beijing,China |
| BookMark | eNo9jrtOwzAUhg0CiVI6szD4BVJ8PzFbqUqp1JYF2FDlxCepRbBRLki8Pa1ATN_wX_RdkrOYIhJyzdmUc6VvpQGjpZkeacCekIkFmyvGgDMAeUpGXOs8E0qqCzLpulAww_ShoPIRedu6fmhdQ9cu1oOrkYaOblNPFzEN9f6O3mMs9x-ufQ-xppuh6UO2Sf4wWGLE1vXhC-lsRavU0ldsQ5Pq_yTFK3JeuabDyR_H5OVh8Tx_zNZPy9V8ts6csLzPbOVE5cB5lIWGox1wEMwLFFCaQom8tIVSRenL3JTaQOG9syCd8FIAcDkmN7-_ARF3n204CH_vOOfCSGnkDz7sVYI |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1145/3676536.3676679 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798400710773 |
| EISSN | 1558-2434 |
| EndPage | 9 |
| ExternalDocumentID | 11126336 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: NSFC.62090024,62222411,62025404,92373206,62202453 funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IF 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO FEDTE IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-a291t-9fa2fa7ade3b57060571720d2e27c6b428c9b44bcdc86c567bdda973a2d327713 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001479882200117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Sep 03 07:09:38 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a291t-9fa2fa7ade3b57060571720d2e27c6b428c9b44bcdc86c567bdda973a2d327713 |
| OpenAccessLink | https://doi.org/10.1145/3676536.3676679 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_11126336 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Oct.-27 |
| PublicationDateYYYYMMDD | 2024-10-27 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct.-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationTitle | Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design |
| PublicationTitleAbbrev | ICCAD |
| PublicationYear | 2024 |
| Publisher | ACM |
| Publisher_xml | – name: ACM |
| SSID | ssib060584048 ssj0020286 |
| Score | 1.9273189 |
| Snippet | Natural language interfaces have exhibited considerable potential in the automation of Verilog generation derived from high-level specifications through the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Benchmark testing Database languages Design automation Design methodology Generative AI Hardware Hardware design languages Large language models Natural language processing Visualization |
| Title | Natural Language is Not Enough: Benchmarking Multi-Modal Generative AI for Verilog Generation |
| URI | https://ieeexplore.ieee.org/document/11126336 |
| WOSCitedRecordID | wos001479882200117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQALryLe8sCaNnH8SNgAtQIJog6AuqDKT9GBBLUpv5-zk7YsDEyO7MSy7PjOd-fvO4SuWeI8pYuOEsJZRJ2DPWeEikBgWi5jq1huQrIJURTZZJKPW7B6wMJYa8PlM9v3jyGWbyq99K6yQeLxLmnKO6gjBG_AWqufx4f3aEzXIQQw6jPecvkklA08MxlLed-XPFzc2iRTCbpktPfPUeyj3gaVh8drfXOAtmx5iHZ_EQoeofdCBh4N_NS6IfFsgYuqxsPSZ-O5wXfQy8enDA5yHMC30XNl4IOGftrLPnz7iOEki9-gTxCM65aq7KHX0fDl_iFqEyhEkuRJHeVOEieFNDZVzNPkMDDeSGyIJUJzBZaHzhWlShudcc24UMbIXKSSmJQIMF-PUbesSnuCsIgF0cLBfs0kdZnLHXFZYpWGExq8y05Rz8_U9KvhyJiuJunsj_pztAMrRL0WIOICdev50l6ibf1dzxbzq7CyPw7YovY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagIAELryLeeGBNmzh-JGyAWrWijToU1AVVfooOJKhN-f3YTtqyMDA5shPLsuM7352_7wC4J5FxlC4yiBAlATbG7jnFRGAFpqY81IKkyiebYFmWTCbpqAareyyM1tpfPtMt9-hj-aqQS-cqa0cO7xLHdBvsEIxRWMG1Vr-PC_DhEK-DCNasT2jN5hNh0nbcZCSmLVdSf3Vrk07Fa5Pu4T_HcQSaG1weHK01zjHY0vkJOPhFKXgK3jPumTTgoHZEwtkCZkUJO7nLx_MAn2wvH5_cu8ihh98Gw0LZDyoCaif94GMf2rMsfLN9WtG4binyJnjtdsbPvaBOoRBwlEZlkBqODGdc6VgQR5RDrPmGQoU0YpIKa3vIVGAspJIJlYQyoRRPWcyRihGzBuwZaORFrs8BZCFDkhm7YxOOTWJSg0wSaSHtGc2-Sy5A083U9KtiyZiuJunyj_o7sNcbDwfTQT97uQL7drWw0wmIXYNGOV_qG7Arv8vZYn7rV_kHuQCmPQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Digest+of+technical+papers+-+IEEE%2FACM+International+Conference+on+Computer-Aided+Design&rft.atitle=Natural+Language+is+Not+Enough%3A+Benchmarking+Multi-Modal+Generative+AI+for+Verilog+Generation&rft.au=Chang%2C+Kaiyan&rft.au=Chen%2C+Zhirong&rft.au=Zhou%2C+Yunhao&rft.au=Zhu%2C+Wenlong&rft.date=2024-10-27&rft.pub=ACM&rft.eissn=1558-2434&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1145%2F3676536.3676679&rft.externalDocID=11126336 |