AdaGL: Adaptive Learning for Agile Distributed Training of Gigantic GNNs

Distributed GNN training on contemporary massive and densely connected graphs requires information aggregation from all neighboring nodes, which leads to an explosion of inter-server communications. This paper proposes AdaGL, a highly scalable end-to-end framework for rapid distributed GNN training....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2023 60th ACM/IEEE Design Automation Conference (DAC) S. 1 - 6
Hauptverfasser: Zhang, Ruisi, Javaheripi, Mojan, Ghodsi, Zahra, Bleiweiss, Amit, Koushanfar, Farinaz
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 09.07.2023
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Distributed GNN training on contemporary massive and densely connected graphs requires information aggregation from all neighboring nodes, which leads to an explosion of inter-server communications. This paper proposes AdaGL, a highly scalable end-to-end framework for rapid distributed GNN training. AdaGL novelty lies upon our adaptive-learning based graph-allocation engine as well as utilizing multi-resolution coarse representation of dense graphs. As a result, AdaGL achieves an unprecedented level of balanced server computation while minimizing the communication overhead. Extensive proof-of-concept evaluations on billion-scale graphs show AdaGL attains ∼30−40% faster convergence compared with prior arts.
DOI:10.1109/DAC56929.2023.10248003