FSPA: An FeFET-based Sparse Matrix-Dense Vector Multiplication Accelerator
Sparse matrix-dense vector multiplication (SpMV) is widely used in various applications. The performance of traditional SpMV accelerators is bounded by memory. In-memory computing (IMC) is a promising technique to alleviate the memory bottleneck. The current IMC accelerator cannot support sparse sto...
Uložené v:
| Vydané v: | 2023 60th ACM/IEEE Design Automation Conference (DAC) s. 1 - 6 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
09.07.2023
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Sparse matrix-dense vector multiplication (SpMV) is widely used in various applications. The performance of traditional SpMV accelerators is bounded by memory. In-memory computing (IMC) is a promising technique to alleviate the memory bottleneck. The current IMC accelerator cannot support sparse storage format and in-situ floating-point multiplication at the same time. In this paper, we propose FSPA, an ferroelectric field-effect transistor (FeFET) based SpMV accelerator. FSPA integrates novel content-addressable memory (CAM) arrays and multiply-add computation (MAC) arrays to support sparse matrices represented in the floating-point format. FSPA achieves significant speedups and energy savings over CPU, GPU and two state-of-the-art IMC accelerators. |
|---|---|
| DOI: | 10.1109/DAC56929.2023.10247895 |