Lightweight Structural Choices Operator for Technology Mapping

Technology mapping quality heavily depends on the subject graph structure. To overcome structural biases, operators construct choice nodes to enable mappings with improved node and level counts. Nevertheless, state-of-the-art structural choice operators scale poorly with graph size.We present the li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2023 60th ACM/IEEE Design Automation Conference (DAC) S. 1 - 6
Hauptverfasser: Grosnit, Antoine, Zimmer, Matthieu, Tutunov, Rasul, Li, Xing, Chen, Lei, Yang, Fan, Yuan, Mingxuan, Bou-Ammar, Haitham
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 09.07.2023
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Technology mapping quality heavily depends on the subject graph structure. To overcome structural biases, operators construct choice nodes to enable mappings with improved node and level counts. Nevertheless, state-of-the-art structural choice operators scale poorly with graph size.We present the lightweight structural choices (LCH) operator that incorporates equivalencies by processing only subparts of the graph. We propose multiple heuristics that rely on specific node extraction orders and subpart sizes to extract non-overlapping components. Compared to state-of-the-art methods on EPFL circuits, LCH is 2.35x faster enduring a small sacrifice in node count (3%) and level reduction (2%).
DOI:10.1109/DAC56929.2023.10247838