Automatic End-to-End Joint Optimization for Kernel Compilation on DSPs

Digital signal processors (DSPs) commonly adopt VLIW-SIMD architecture and are extensively applied in most compute-heavy embedded sensing applications. The performances for DSP kernels rely heavily on compilations and handwritten optimizations. Hand-crafted methods suffer from heavy burden on progra...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2023 60th ACM/IEEE Design Automation Conference (DAC) s. 1 - 6
Hlavní autoři: Zhao, Xiaolei, Chen, Zhaoyun, Shi, Yang, Wen, Mei, Zhang, Chunyun
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 09.07.2023
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Digital signal processors (DSPs) commonly adopt VLIW-SIMD architecture and are extensively applied in most compute-heavy embedded sensing applications. The performances for DSP kernels rely heavily on compilations and handwritten optimizations. Hand-crafted methods suffer from heavy burden on programmers, while state-of-the-art automatic compilation methods always focus more on a certain aspect (tiling or auto-vectorization), lacking of global and sequential vision on the intact compilation optimization process. It still requires empirical adjustments by programmers in the actual scenario.In order to release programmers from kernel tuning, we propose JOKer, an automatic end-to-end multi-level code generator for kernel joint optimization on DSPs. JOKer integrates means of optimizations in compiling process and provides an end-to-end workflow for performance tuning. It explores compilation configurations through a reinforcement learning based agent for global optimal solution and generates high performance kernel codes for DSPs automatically.
AbstractList Digital signal processors (DSPs) commonly adopt VLIW-SIMD architecture and are extensively applied in most compute-heavy embedded sensing applications. The performances for DSP kernels rely heavily on compilations and handwritten optimizations. Hand-crafted methods suffer from heavy burden on programmers, while state-of-the-art automatic compilation methods always focus more on a certain aspect (tiling or auto-vectorization), lacking of global and sequential vision on the intact compilation optimization process. It still requires empirical adjustments by programmers in the actual scenario.In order to release programmers from kernel tuning, we propose JOKer, an automatic end-to-end multi-level code generator for kernel joint optimization on DSPs. JOKer integrates means of optimizations in compiling process and provides an end-to-end workflow for performance tuning. It explores compilation configurations through a reinforcement learning based agent for global optimal solution and generates high performance kernel codes for DSPs automatically.
Author Zhao, Xiaolei
Wen, Mei
Shi, Yang
Chen, Zhaoyun
Zhang, Chunyun
Author_xml – sequence: 1
  givenname: Xiaolei
  surname: Zhao
  fullname: Zhao, Xiaolei
  organization: National University of Defense Technology,Changsha,China
– sequence: 2
  givenname: Zhaoyun
  surname: Chen
  fullname: Chen, Zhaoyun
  email: chenzhaoyun@nudt.edu.cn
  organization: National University of Defense Technology,Changsha,China
– sequence: 3
  givenname: Yang
  surname: Shi
  fullname: Shi, Yang
  organization: National University of Defense Technology,Changsha,China
– sequence: 4
  givenname: Mei
  surname: Wen
  fullname: Wen, Mei
  organization: National University of Defense Technology,Changsha,China
– sequence: 5
  givenname: Chunyun
  surname: Zhang
  fullname: Zhang, Chunyun
  organization: National University of Defense Technology,Changsha,China
BookMark eNo1j9tKxDAURSMoqGP_QCQ_0PHkpEmax9K5eBkYQX0e0jaBQJuUNj7o11sYhQ0L9oYN65ZchhgsIQ8M1oyBftxUtZAa9RoB-ZoBFkoDuyCZVrrkAjjyomTXJJtn34AEURYgixuyq75SHEzyLd2GLk8xX0Bfog-JHsfkB_-zjDFQFyf6aqdge1rHYfT9uV6yeX-b78iVM_1ssz-uyOdu-1E_5Yfj_rmuDrlBDSnvnDRCGdGWzDadFJwjCoNKGWwdc2glNgqkE41STsquk7CYoLOqbIR0jq_I_fnXW2tP4-QHM32f_nX5L19yTNw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC56929.2023.10247901
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350323481
EndPage 6
ExternalDocumentID 10247901
Genre orig-research
GrantInformation_xml – fundername: Nature
  funderid: 10.13039/501100020487
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a290t-df6a57a5c81ebd6533225a277a2cf1f2e62b706f5b77f66dd600242fe78b56ff3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001073487300209&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:51:00 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a290t-df6a57a5c81ebd6533225a277a2cf1f2e62b706f5b77f66dd600242fe78b56ff3
PageCount 6
ParticipantIDs ieee_primary_10247901
PublicationCentury 2000
PublicationDate 2023-July-9
PublicationDateYYYYMMDD 2023-07-09
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-9
  day: 09
PublicationDecade 2020
PublicationTitle 2023 60th ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584064
Score 2.2247233
Snippet Digital signal processors (DSPs) commonly adopt VLIW-SIMD architecture and are extensively applied in most compute-heavy embedded sensing applications. The...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Auto Tuning
Code Generation
Codes
Digital signal processors
DSP
Generators
Kernel Compilation
Q-learning
Reinforcement Learning
Sensors
Signal processing algorithms
Space exploration
Title Automatic End-to-End Joint Optimization for Kernel Compilation on DSPs
URI https://ieeexplore.ieee.org/document/10247901
WOSCitedRecordID wos001073487300209&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aPHhSseKbHLym7iuZ5lj6QFRqwQe9lTwmUNDd0m79_SbpVvHgQbKQZWFZdnYn35D5vhlCbpTUfpicCS41K4xzTOpEsyz3S6bhSmEsPP_2CONxdzqVk0asHrUwiBjJZ9gJpzGXbyuzDltl3sOzAmRQa-0CwEastf15QnrPg1PRqIDTRN4Oen0uPPx3QovwzvbmX21UIoqMDv75_EPS_tHj0ck30hyRHSyPyai3rqtYcJUOS8vqivmJ3lfzsqZPfiH4aBSW1Iel9AGXJb7T4P3zDfuN-mPwPFm1yeto-NK_Y01XBKYymdTMOqE4KG66KWorfLjmXVJlACozLnUZikxDIhzXAE4Ia0XEYYfQ1Vw4l5-QVlmVeEooCNSB-pJK7cOiHKRFK523mS0KLg2ckXYwwmyxKXwx277_-R_XL8h-MHVks8pL0qqXa7wie-aznq-W1_FzfQFIi5VR
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SBT2pWPFtDl5Td9NN0hxLH6ittWCV3koeEyjorrRbf79JulU8eJAEEgKBZJLJDJn5ZhC6UVL7YpqEM6lJZpwjUiea0KZ_Mg1TCmLg-dehGI1a06kcV2D1iIUBgOh8Bo3QjbZ8W5hV-CrzHE4zIQNaa5tlGU3XcK3N9QkGPi-esgoHnCbyttvuMO4VgEZIEt7YTP-VSCXKkf7-P1dwgOo_iDw8_pY1h2gL8iPUb6_KIoZcxb3ckrIgvsEPxTwv8ZN_Ct4rjCX2iikewCKHNxz4f772f8O-dp_Hyzp66fcmnTtS5UUgisqkJNZxxYRippWCttwrbJ4pFRVCUeNSR4FTLRLumBbCcW4tj5LYgWhpxp1rHqNaXuRwgrDgoIPzSyq1V4yaQlqw0nma2Sxj0ohTVA9EmH2sQ1_MNvs_-2P8Gu3eTR6Hs-H9aHCO9gLZo2-rvEC1crGCS7RjPsv5cnEVj-4LQDqYmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+60th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Automatic+End-to-End+Joint+Optimization+for+Kernel+Compilation+on+DSPs&rft.au=Zhao%2C+Xiaolei&rft.au=Chen%2C+Zhaoyun&rft.au=Shi%2C+Yang&rft.au=Wen%2C+Mei&rft.date=2023-07-09&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FDAC56929.2023.10247901&rft.externalDocID=10247901