Lightning Talk 6: Bringing Together Foundation Models and Edge Devices

Deep learning models have been widely used in natural language processing and computer vision. These models require heavy computation, large memory, and massive amounts of training data. Deep learning models may be deployed on edge devices when transferring data to cloud is infeasible or undesirable...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2023 60th ACM/IEEE Design Automation Conference (DAC) s. 1 - 2
Hlavní autori: Eliopoulos, Nick John, Lu, Yung-Hsiang
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 09.07.2023
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Deep learning models have been widely used in natural language processing and computer vision. These models require heavy computation, large memory, and massive amounts of training data. Deep learning models may be deployed on edge devices when transferring data to cloud is infeasible or undesirable. Running these models on edge devices require significant improvement in the efficiency by reducing the models' resource demands. Existing methods to improve efficiency often require new architectures and retraining. The recent trend in machine learning is to create general-purpose models (called foundation models). These pre-trained models can be repurposed for different applications. This paper reviews the methods for improving efficiency of machine learning models, the rise of foundation models, challenges and possible solutions improving efficiency of pre-trained models. Future solutions for better efficiency should focus on improving existing trained models with no or limited training.
AbstractList Deep learning models have been widely used in natural language processing and computer vision. These models require heavy computation, large memory, and massive amounts of training data. Deep learning models may be deployed on edge devices when transferring data to cloud is infeasible or undesirable. Running these models on edge devices require significant improvement in the efficiency by reducing the models' resource demands. Existing methods to improve efficiency often require new architectures and retraining. The recent trend in machine learning is to create general-purpose models (called foundation models). These pre-trained models can be repurposed for different applications. This paper reviews the methods for improving efficiency of machine learning models, the rise of foundation models, challenges and possible solutions improving efficiency of pre-trained models. Future solutions for better efficiency should focus on improving existing trained models with no or limited training.
Author Eliopoulos, Nick John
Lu, Yung-Hsiang
Author_xml – sequence: 1
  givenname: Nick John
  surname: Eliopoulos
  fullname: Eliopoulos, Nick John
  email: neliopou@purdue.edu
  organization: Purdue University,Electrical and Computer Engineering,West Lafayette,United States
– sequence: 2
  givenname: Yung-Hsiang
  surname: Lu
  fullname: Lu, Yung-Hsiang
  email: yunglu@purdue.edu
  organization: Purdue University,Electrical and Computer Engineering,West Lafayette,United States
BookMark eNo1j8tKxDAYRiMoqGPfQCQv0Prn3rgbO1MVKm7G9ZA2fzrBmkpbBd9e8bL6OGdx4Dsnx2lMSMgVg4IxsNebdaW05bbgwEXBgEujrTwimTW2FAoEF7JkpySb59iCBlVK0PKM1E3sD0uKqac7N7xQfUNvp2_6EWOPywEnWo_vybsljok-jh6Hmbrk6db3SDf4ETucL8hJcMOM2d-uyHO93VX3efN091Ctm9xxC0vubeel6JRuNbrQSmjb1oRgmQdApoPBEhjzEpySHo0U0IVO8dIYaTAELVbk8rcbEXH_NsVXN33u_--KL1DXTRU
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC56929.2023.10247694
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350323481
EndPage 2
ExternalDocumentID 10247694
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a290t-d9cd43c56b6eafb40bbb7ff91d00e16f7e8011d40a54de7430cfc5287747eff63
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001073487300320&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:50:59 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a290t-d9cd43c56b6eafb40bbb7ff91d00e16f7e8011d40a54de7430cfc5287747eff63
PageCount 2
ParticipantIDs ieee_primary_10247694
PublicationCentury 2000
PublicationDate 2023-July-9
PublicationDateYYYYMMDD 2023-07-09
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-9
  day: 09
PublicationDecade 2020
PublicationTitle 2023 60th ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584064
Score 2.2245946
Snippet Deep learning models have been widely used in natural language processing and computer vision. These models require heavy computation, large memory, and...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computational modeling
Deep learning
Design automation
edge computing
energy efficiency
foundation model
Lightning
Memory management
Training
Training data
transformer neural network
Title Lightning Talk 6: Bringing Together Foundation Models and Edge Devices
URI https://ieeexplore.ieee.org/document/10247694
WOSCitedRecordID wos001073487300320&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECa28eBJjTW-w8HrVnbLwuJN-4gH0_RQk94aHkNjbHZNu_X3O9CujQcP3ggJEIbHxwx8fITca28ybmSWOITzhAtcingK0UlWGFcgwFqWmyg2IcfjYjZTkx1ZPXJhACA-PoNuSMa7fFfZTQiV4QrPuBSKt0hLSrElazWTJ1zvITjxHQs4Zeph8NTPBcJ_N0iEd5vCv2RUIoqMjv_Z_gnp7Pl4dPKDNKfkAMozMnoNfnUIa9CpXn5Q8UifQ5AuZlSLSOSle9UkGlTPlmuqS0eHbgF0AHGT6JC30XDaf0l2qgiJzhSrE6es4z2bCyMALc2ZMUZ6r1LHGKTCS0DQSR1nOucO8IDArLc5OkboOID3ondO2mVVwgWhphDGoj-kPXdcWWlsYbGOjFtpnfP-knSCEeaf248v5k3_r_7IvyZHwdTxNau6Ie16tYFbcmi_6vf16i4O1zdrBpZB
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UTfSkRoxve_C62F1m2603RQhGJBww4Ub6JEayGB7-fqcFJB48eNs02aadPr6Zab9-hNwqrzPQIksswnkCHJcieiEqyQptCwRYw3IdxSZEt1sMBrK3IqtHLoxzLl4-c7XwGc_y7cQsQqoMV3gGgkvYJjs5QMaWdK319AkHfAhPsOIBp0zePT00co4OQC2IhNfWv_8SUok40jr4ZwsOSXXDyKO9H6w5IluuPCatToisQ2KD9tX4g_J7-hjSdLFgMopUXrrRTaJB92w8o6q0tGlHjj65uE1UyVur2W-0k5UuQqIyyeaJlcZC3eRcc4e2Bqa1Ft7L1DLmUu6FQ9hJLTCVg3XoIjDjTY6hEYYOzntePyGVclK6U0J1wbXBiEh5sCCN0KYwWEcGRhhrvT8j1WCE4efy6Yvhuv_nf5TfkL12_7Uz7Dx3Xy7IfjB7vNsqL0llPl24K7Jrvubvs-l1HLpvbIWZiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+60th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Lightning+Talk+6%3A+Bringing+Together+Foundation+Models+and+Edge+Devices&rft.au=Eliopoulos%2C+Nick+John&rft.au=Lu%2C+Yung-Hsiang&rft.date=2023-07-09&rft.pub=IEEE&rft.spage=1&rft.epage=2&rft_id=info:doi/10.1109%2FDAC56929.2023.10247694&rft.externalDocID=10247694