Lightning Talk 6: Bringing Together Foundation Models and Edge Devices
Deep learning models have been widely used in natural language processing and computer vision. These models require heavy computation, large memory, and massive amounts of training data. Deep learning models may be deployed on edge devices when transferring data to cloud is infeasible or undesirable...
Uložené v:
| Vydané v: | 2023 60th ACM/IEEE Design Automation Conference (DAC) s. 1 - 2 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
09.07.2023
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Deep learning models have been widely used in natural language processing and computer vision. These models require heavy computation, large memory, and massive amounts of training data. Deep learning models may be deployed on edge devices when transferring data to cloud is infeasible or undesirable. Running these models on edge devices require significant improvement in the efficiency by reducing the models' resource demands. Existing methods to improve efficiency often require new architectures and retraining. The recent trend in machine learning is to create general-purpose models (called foundation models). These pre-trained models can be repurposed for different applications. This paper reviews the methods for improving efficiency of machine learning models, the rise of foundation models, challenges and possible solutions improving efficiency of pre-trained models. Future solutions for better efficiency should focus on improving existing trained models with no or limited training. |
|---|---|
| AbstractList | Deep learning models have been widely used in natural language processing and computer vision. These models require heavy computation, large memory, and massive amounts of training data. Deep learning models may be deployed on edge devices when transferring data to cloud is infeasible or undesirable. Running these models on edge devices require significant improvement in the efficiency by reducing the models' resource demands. Existing methods to improve efficiency often require new architectures and retraining. The recent trend in machine learning is to create general-purpose models (called foundation models). These pre-trained models can be repurposed for different applications. This paper reviews the methods for improving efficiency of machine learning models, the rise of foundation models, challenges and possible solutions improving efficiency of pre-trained models. Future solutions for better efficiency should focus on improving existing trained models with no or limited training. |
| Author | Eliopoulos, Nick John Lu, Yung-Hsiang |
| Author_xml | – sequence: 1 givenname: Nick John surname: Eliopoulos fullname: Eliopoulos, Nick John email: neliopou@purdue.edu organization: Purdue University,Electrical and Computer Engineering,West Lafayette,United States – sequence: 2 givenname: Yung-Hsiang surname: Lu fullname: Lu, Yung-Hsiang email: yunglu@purdue.edu organization: Purdue University,Electrical and Computer Engineering,West Lafayette,United States |
| BookMark | eNo1j8tKxDAYRiMoqGPfQCQv0Prn3rgbO1MVKm7G9ZA2fzrBmkpbBd9e8bL6OGdx4Dsnx2lMSMgVg4IxsNebdaW05bbgwEXBgEujrTwimTW2FAoEF7JkpySb59iCBlVK0PKM1E3sD0uKqac7N7xQfUNvp2_6EWOPywEnWo_vybsljok-jh6Hmbrk6db3SDf4ETucL8hJcMOM2d-uyHO93VX3efN091Ctm9xxC0vubeel6JRuNbrQSmjb1oRgmQdApoPBEhjzEpySHo0U0IVO8dIYaTAELVbk8rcbEXH_NsVXN33u_--KL1DXTRU |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/DAC56929.2023.10247694 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350323481 |
| EndPage | 2 |
| ExternalDocumentID | 10247694 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH ACM ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIO |
| ID | FETCH-LOGICAL-a290t-d9cd43c56b6eafb40bbb7ff91d00e16f7e8011d40a54de7430cfc5287747eff63 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001073487300320&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:50:59 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a290t-d9cd43c56b6eafb40bbb7ff91d00e16f7e8011d40a54de7430cfc5287747eff63 |
| PageCount | 2 |
| ParticipantIDs | ieee_primary_10247694 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-July-9 |
| PublicationDateYYYYMMDD | 2023-07-09 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-July-9 day: 09 |
| PublicationDecade | 2020 |
| PublicationTitle | 2023 60th ACM/IEEE Design Automation Conference (DAC) |
| PublicationTitleAbbrev | DAC |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib060584064 |
| Score | 2.2245946 |
| Snippet | Deep learning models have been widely used in natural language processing and computer vision. These models require heavy computation, large memory, and... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Computational modeling Deep learning Design automation edge computing energy efficiency foundation model Lightning Memory management Training Training data transformer neural network |
| Title | Lightning Talk 6: Bringing Together Foundation Models and Edge Devices |
| URI | https://ieeexplore.ieee.org/document/10247694 |
| WOSCitedRecordID | wos001073487300320&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECa28eBJjTW-w8HrVnbLwuJN-4gH0_RQk94aHkNjbHZNu_X3O9CujQcP3ggJEIbHxwx8fITca28ybmSWOITzhAtcingK0UlWGFcgwFqWmyg2IcfjYjZTkx1ZPXJhACA-PoNuSMa7fFfZTQiV4QrPuBSKt0hLSrElazWTJ1zvITjxHQs4Zeph8NTPBcJ_N0iEd5vCv2RUIoqMjv_Z_gnp7Pl4dPKDNKfkAMozMnoNfnUIa9CpXn5Q8UifQ5AuZlSLSOSle9UkGlTPlmuqS0eHbgF0AHGT6JC30XDaf0l2qgiJzhSrE6es4z2bCyMALc2ZMUZ6r1LHGKTCS0DQSR1nOucO8IDArLc5OkboOID3ondO2mVVwgWhphDGoj-kPXdcWWlsYbGOjFtpnfP-knSCEeaf248v5k3_r_7IvyZHwdTxNau6Ie16tYFbcmi_6vf16i4O1zdrBpZB |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UTfSkRoxve_C62F1m2603RQhGJBww4Ub6JEayGB7-fqcFJB48eNs02aadPr6Zab9-hNwqrzPQIksswnkCHJcieiEqyQptCwRYw3IdxSZEt1sMBrK3IqtHLoxzLl4-c7XwGc_y7cQsQqoMV3gGgkvYJjs5QMaWdK319AkHfAhPsOIBp0zePT00co4OQC2IhNfWv_8SUok40jr4ZwsOSXXDyKO9H6w5IluuPCatToisQ2KD9tX4g_J7-hjSdLFgMopUXrrRTaJB92w8o6q0tGlHjj65uE1UyVur2W-0k5UuQqIyyeaJlcZC3eRcc4e2Bqa1Ft7L1DLmUu6FQ9hJLTCVg3XoIjDjTY6hEYYOzntePyGVclK6U0J1wbXBiEh5sCCN0KYwWEcGRhhrvT8j1WCE4efy6Yvhuv_nf5TfkL12_7Uz7Dx3Xy7IfjB7vNsqL0llPl24K7Jrvubvs-l1HLpvbIWZiA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+60th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Lightning+Talk+6%3A+Bringing+Together+Foundation+Models+and+Edge+Devices&rft.au=Eliopoulos%2C+Nick+John&rft.au=Lu%2C+Yung-Hsiang&rft.date=2023-07-09&rft.pub=IEEE&rft.spage=1&rft.epage=2&rft_id=info:doi/10.1109%2FDAC56929.2023.10247694&rft.externalDocID=10247694 |