SEO: Safety-Aware Energy Optimization Framework for Multi-Sensor Neural Controllers at the Edge

Runtime energy management has become quintessential for multi-sensor autonomous systems at the edge for achieving high performance given the platform constraints. Typical for such systems, however, is to have their controllers designed with formal guarantees on safety that precede in priority such o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2023 60th ACM/IEEE Design Automation Conference (DAC) s. 1 - 6
Hlavní autoři: Odema, Mohanad, Ferlez, James, Shoukry, Yasser, Al Faruque, Mohammad Abdullah
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 09.07.2023
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Runtime energy management has become quintessential for multi-sensor autonomous systems at the edge for achieving high performance given the platform constraints. Typical for such systems, however, is to have their controllers designed with formal guarantees on safety that precede in priority such optimizations, which in turn limits their application in real settings. In this paper, we propose a novel energy optimization framework that is aware of the autonomous system's safety state, and leverages it to regulate the application of energy optimization methods so that the system's formal safety properties are preserved. In particular, through the formal characterization of a system's safety state as a dynamic processing deadline, the computing workloads of the underlying models can be adapted accordingly. For our experiments, we model two popular runtime energy optimization methods, offloading and gating, and simulate an autonomous driving system (ADS) use-case in the CARLA simulation environment with performance characterizations obtained from the standard Nvidia Drive PX2 ADS platform. Our results demonstrate that through a formal awareness of the perceived risks in the test case scenario, energy efficiency gains are still achieved (reaching 89.9%) while maintaining the desired safety properties.
AbstractList Runtime energy management has become quintessential for multi-sensor autonomous systems at the edge for achieving high performance given the platform constraints. Typical for such systems, however, is to have their controllers designed with formal guarantees on safety that precede in priority such optimizations, which in turn limits their application in real settings. In this paper, we propose a novel energy optimization framework that is aware of the autonomous system's safety state, and leverages it to regulate the application of energy optimization methods so that the system's formal safety properties are preserved. In particular, through the formal characterization of a system's safety state as a dynamic processing deadline, the computing workloads of the underlying models can be adapted accordingly. For our experiments, we model two popular runtime energy optimization methods, offloading and gating, and simulate an autonomous driving system (ADS) use-case in the CARLA simulation environment with performance characterizations obtained from the standard Nvidia Drive PX2 ADS platform. Our results demonstrate that through a formal awareness of the perceived risks in the test case scenario, energy efficiency gains are still achieved (reaching 89.9%) while maintaining the desired safety properties.
Author Ferlez, James
Shoukry, Yasser
Al Faruque, Mohammad Abdullah
Odema, Mohanad
Author_xml – sequence: 1
  givenname: Mohanad
  surname: Odema
  fullname: Odema, Mohanad
  organization: University of California,Department of Electrical Engineering and Computer Science,Irvine,CA,USA
– sequence: 2
  givenname: James
  surname: Ferlez
  fullname: Ferlez, James
  organization: University of California,Department of Electrical Engineering and Computer Science,Irvine,CA,USA
– sequence: 3
  givenname: Yasser
  surname: Shoukry
  fullname: Shoukry, Yasser
  organization: University of California,Department of Electrical Engineering and Computer Science,Irvine,CA,USA
– sequence: 4
  givenname: Mohammad Abdullah
  surname: Al Faruque
  fullname: Al Faruque, Mohammad Abdullah
  organization: University of California,Department of Electrical Engineering and Computer Science,Irvine,CA,USA
BookMark eNo1kNFKwzAUQCMoqHN_IJIf6LxJmrbXt1E3FaZ7mD6XpLmdwa4dacaoX-9AfTqcl_Nwrtl513fE2J2AmRCA94_zUmcocSZBqpkAmea5FmdsijkWSoOSKi3EJZsOg7eQgS5SyNIrVm0W6we-MQ3FMZkfTSC-6ChsR77eR7_z3yb6vuPLYHZ07MMXb_rAXw9t9MmGuuEkb3QIpuVl38XQty2FgZvI4-cp5LZ0wy4a0w40_eOEfSwX7-Vzslo_vZTzVWIkQkzqXKgMU6lsagE0OESLrsAmr1UtnXME5JTSxgIaaWrUVgNkjZWolJBWTdjtb9cTUbUPfmfCWP1_UD-JDlXh
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC56929.2023.10247751
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350323481
EndPage 6
ExternalDocumentID 10247751
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a290t-c71369423b4b0050d99b9d89f7c3c2ddde0ed335ab09a2ac95b5006fb293312b3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001073487300081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:47:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a290t-c71369423b4b0050d99b9d89f7c3c2ddde0ed335ab09a2ac95b5006fb293312b3
PageCount 6
ParticipantIDs ieee_primary_10247751
PublicationCentury 2000
PublicationDate 2023-July-9
PublicationDateYYYYMMDD 2023-07-09
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-9
  day: 09
PublicationDecade 2020
PublicationTitle 2023 60th ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584064
Score 2.2316513
Snippet Runtime energy management has become quintessential for multi-sensor autonomous systems at the edge for achieving high performance given the platform...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptation models
Autonomous Systems
Computational modeling
Edge Computing
Formal Methods
Multi-sensor Autonomous Driving Systems
Optimization methods
Pipelines
Process control
Runtime
Safe Control
Safety
Title SEO: Safety-Aware Energy Optimization Framework for Multi-Sensor Neural Controllers at the Edge
URI https://ieeexplore.ieee.org/document/10247751
WOSCitedRecordID wos001073487300081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PT8MgFMeJLh48qXHG3-HglcmgLcPbMrt4MNuSqdlt4QE1JnNbZqfxv_fBWo0HD96gSUsCPL6P8j48Qq5koCu1lUxYHpCcpGCQFSFyBz25UOIxnc_TvRoMOpOJHlWwemRhvPcx-My3QjGe5buFXYdfZWjhIlEqANPbSmUbWKuePOF4D8UpqSjgNtfXt91emqH8t0KK8Fb98q80KlFF-nv_bH-fNH94PDr6VpoDsuXnh2Q6zoc3dGwKX36y7odZeZpHkI8OcRl4rfhK2q-jryi6pzTytmyMe1eshIs5zIz2NtHqM3QEqSkpeoQ0d8--SR77-UPvjlXpEpgRmpfM4n4z0-geQRJsizutQbuOLpSVVjhcx7h3UqYGuDbCWJ1CijZXACq-bAuQR6QxX8z9MaGdTForwQCg_LfxO1YBB1GAUwK0siekGXpnutzciDGtO-b0j-dnZDeMQQxz1eekUa7W_oLs2Pfy5W11GcfxC-q6nfo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMeDTEFPKk78bQ5eM7OkbRZvY3Yozm2wKbuV_KoIc5PZKf73vmSt4sGDt6TQEpK8vG-a98lD6IJ7ulIaTpihHsmJcqKT3EfugJLzJRrS-Tz2RL_fmkzksITVAwvjnAvBZ67hi-Es387N0v8qAwtnkRAemF6Po4jRFa5VTR9_wAfuKSo54CaVl9ftTpyAAGj4JOGN6vVfiVSCH-lu_7MFO6j-Q-Th4bev2UVrbraHslE6uMIjlbvik7Q_1MLhNKB8eAALwUtJWOJuFX-FQaDiQNySEexeoeKv5lBT3FnFq09BCmJVYNCEOLVPro4euum4c0PKhAlEMUkLYmDHmUgQSDry1kWtlFralsyF4YZZWMmos5zHSlOpmDIy1jFYXa7B5_Mm03wf1WbzmTtAuJVwY7hWWoMAaMJ3jNBUs1xbwbQU5hDVfe9kr6s7MbKqY47-eH6ONm_G972sd9u_O0ZbfjxC0Ks8QbVisXSnaMO8F89vi7Mwpl9Q16FB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+60th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=SEO%3A+Safety-Aware+Energy+Optimization+Framework+for+Multi-Sensor+Neural+Controllers+at+the+Edge&rft.au=Odema%2C+Mohanad&rft.au=Ferlez%2C+James&rft.au=Shoukry%2C+Yasser&rft.au=Al+Faruque%2C+Mohammad+Abdullah&rft.date=2023-07-09&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FDAC56929.2023.10247751&rft.externalDocID=10247751